A real-time high precision eye center localizer

Precise eye center localization remains a very promising but challenging task, while its real-time performance constitutes a critical constraint in many human interaction applications. In this paper a new hybrid framework that combines the shape-based Modified Fast Radial Symmetry Transform (MFRST)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of real-time image processing 2022-04, Vol.19 (2), p.475-486
Hauptverfasser: Poulopoulos, Nikolaos, Psarakis, Emmanouil Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue 2
container_start_page 475
container_title Journal of real-time image processing
container_volume 19
creator Poulopoulos, Nikolaos
Psarakis, Emmanouil Z.
description Precise eye center localization remains a very promising but challenging task, while its real-time performance constitutes a critical constraint in many human interaction applications. In this paper a new hybrid framework that combines the shape-based Modified Fast Radial Symmetry Transform (MFRST) and a Convolutional Neural Network (CNN), is introduced. The motivation of this work is to exploit the circularity of the iris to reduce the search space and consequently, the computational complexity of the fed CNN. Thus, the proposed hybrid scheme not only achieves real-time performance, but also increases substantially the localization accuracy by reducing the false detections of the MFRST. The experimental results that stemmed from the most challenging face databases demonstrated high accuracy, outperforming state of the art techniques even those that are based on end-to-end deep neural networks. To deal with unreliable data and provide valid evaluation, we manually annotated the FERET database, making the annotations publicly available. Moreover, the reduced computational time of the proposed scheme reveals that it can be incorporated in low-cost eye trackers, where the real-time performance is a basic prerequisite.
doi_str_mv 10.1007/s11554-022-01200-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918677421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918677421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-cc30f6fcd33df283a55de0202ec2e28daf87b232e3ef1e300c3db4901af5c89d3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAkyRmE3P5zhxxqoCilSJBWbLdc6tqzQpdjqUpycQBBvT3fB__-k-xm4F3AuAcpaEUCrngMhBIADXZ2widCG4RlGd_-4Al-wqpR1AURZSTdhsnkWyDe_DnrJt2GyzQyQXUujajE6UOWp7ilnTOduED4rX7MLbJtHNz5yyt8eH18WSr16enhfzFXeYVz13ToIvvKulrD1qaZWqCRCQHBLq2npdrlEiSfKCJICT9TqvQFivnK5qOWV3Y-8hdu9HSr3ZdcfYDicNVsMzZZmjGFI4plzsUorkzSGGvY0nI8B8iTGjGDOIMd9ijB4gOUJpCLcbin_V_1CfkhdlAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918677421</pqid></control><display><type>article</type><title>A real-time high precision eye center localizer</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Poulopoulos, Nikolaos ; Psarakis, Emmanouil Z.</creator><creatorcontrib>Poulopoulos, Nikolaos ; Psarakis, Emmanouil Z.</creatorcontrib><description>Precise eye center localization remains a very promising but challenging task, while its real-time performance constitutes a critical constraint in many human interaction applications. In this paper a new hybrid framework that combines the shape-based Modified Fast Radial Symmetry Transform (MFRST) and a Convolutional Neural Network (CNN), is introduced. The motivation of this work is to exploit the circularity of the iris to reduce the search space and consequently, the computational complexity of the fed CNN. Thus, the proposed hybrid scheme not only achieves real-time performance, but also increases substantially the localization accuracy by reducing the false detections of the MFRST. The experimental results that stemmed from the most challenging face databases demonstrated high accuracy, outperforming state of the art techniques even those that are based on end-to-end deep neural networks. To deal with unreliable data and provide valid evaluation, we manually annotated the FERET database, making the annotations publicly available. Moreover, the reduced computational time of the proposed scheme reveals that it can be incorporated in low-cost eye trackers, where the real-time performance is a basic prerequisite.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-022-01200-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Annotations ; Artificial neural networks ; Computer Graphics ; Computer Science ; Computing time ; Eye (anatomy) ; Image Processing and Computer Vision ; Localization ; Machine learning ; Methods ; Multimedia Information Systems ; Neural networks ; Original Research Paper ; Pattern Recognition ; Real time ; Signal,Image and Speech Processing ; Symmetry</subject><ispartof>Journal of real-time image processing, 2022-04, Vol.19 (2), p.475-486</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-cc30f6fcd33df283a55de0202ec2e28daf87b232e3ef1e300c3db4901af5c89d3</citedby><cites>FETCH-LOGICAL-c249t-cc30f6fcd33df283a55de0202ec2e28daf87b232e3ef1e300c3db4901af5c89d3</cites><orcidid>0000-0002-9627-0640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11554-022-01200-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918677421?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72341</link.rule.ids></links><search><creatorcontrib>Poulopoulos, Nikolaos</creatorcontrib><creatorcontrib>Psarakis, Emmanouil Z.</creatorcontrib><title>A real-time high precision eye center localizer</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>Precise eye center localization remains a very promising but challenging task, while its real-time performance constitutes a critical constraint in many human interaction applications. In this paper a new hybrid framework that combines the shape-based Modified Fast Radial Symmetry Transform (MFRST) and a Convolutional Neural Network (CNN), is introduced. The motivation of this work is to exploit the circularity of the iris to reduce the search space and consequently, the computational complexity of the fed CNN. Thus, the proposed hybrid scheme not only achieves real-time performance, but also increases substantially the localization accuracy by reducing the false detections of the MFRST. The experimental results that stemmed from the most challenging face databases demonstrated high accuracy, outperforming state of the art techniques even those that are based on end-to-end deep neural networks. To deal with unreliable data and provide valid evaluation, we manually annotated the FERET database, making the annotations publicly available. Moreover, the reduced computational time of the proposed scheme reveals that it can be incorporated in low-cost eye trackers, where the real-time performance is a basic prerequisite.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Computing time</subject><subject>Eye (anatomy)</subject><subject>Image Processing and Computer Vision</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Original Research Paper</subject><subject>Pattern Recognition</subject><subject>Real time</subject><subject>Signal,Image and Speech Processing</subject><subject>Symmetry</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kLFOwzAQhi0EEqXwAkyRmE3P5zhxxqoCilSJBWbLdc6tqzQpdjqUpycQBBvT3fB__-k-xm4F3AuAcpaEUCrngMhBIADXZ2widCG4RlGd_-4Al-wqpR1AURZSTdhsnkWyDe_DnrJt2GyzQyQXUujajE6UOWp7ilnTOduED4rX7MLbJtHNz5yyt8eH18WSr16enhfzFXeYVz13ToIvvKulrD1qaZWqCRCQHBLq2npdrlEiSfKCJICT9TqvQFivnK5qOWV3Y-8hdu9HSr3ZdcfYDicNVsMzZZmjGFI4plzsUorkzSGGvY0nI8B8iTGjGDOIMd9ijB4gOUJpCLcbin_V_1CfkhdlAA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Poulopoulos, Nikolaos</creator><creator>Psarakis, Emmanouil Z.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9627-0640</orcidid></search><sort><creationdate>20220401</creationdate><title>A real-time high precision eye center localizer</title><author>Poulopoulos, Nikolaos ; Psarakis, Emmanouil Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-cc30f6fcd33df283a55de0202ec2e28daf87b232e3ef1e300c3db4901af5c89d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Computing time</topic><topic>Eye (anatomy)</topic><topic>Image Processing and Computer Vision</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Original Research Paper</topic><topic>Pattern Recognition</topic><topic>Real time</topic><topic>Signal,Image and Speech Processing</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poulopoulos, Nikolaos</creatorcontrib><creatorcontrib>Psarakis, Emmanouil Z.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poulopoulos, Nikolaos</au><au>Psarakis, Emmanouil Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A real-time high precision eye center localizer</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>19</volume><issue>2</issue><spage>475</spage><epage>486</epage><pages>475-486</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>Precise eye center localization remains a very promising but challenging task, while its real-time performance constitutes a critical constraint in many human interaction applications. In this paper a new hybrid framework that combines the shape-based Modified Fast Radial Symmetry Transform (MFRST) and a Convolutional Neural Network (CNN), is introduced. The motivation of this work is to exploit the circularity of the iris to reduce the search space and consequently, the computational complexity of the fed CNN. Thus, the proposed hybrid scheme not only achieves real-time performance, but also increases substantially the localization accuracy by reducing the false detections of the MFRST. The experimental results that stemmed from the most challenging face databases demonstrated high accuracy, outperforming state of the art techniques even those that are based on end-to-end deep neural networks. To deal with unreliable data and provide valid evaluation, we manually annotated the FERET database, making the annotations publicly available. Moreover, the reduced computational time of the proposed scheme reveals that it can be incorporated in low-cost eye trackers, where the real-time performance is a basic prerequisite.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-022-01200-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9627-0640</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-8200
ispartof Journal of real-time image processing, 2022-04, Vol.19 (2), p.475-486
issn 1861-8200
1861-8219
language eng
recordid cdi_proquest_journals_2918677421
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Accuracy
Algorithms
Annotations
Artificial neural networks
Computer Graphics
Computer Science
Computing time
Eye (anatomy)
Image Processing and Computer Vision
Localization
Machine learning
Methods
Multimedia Information Systems
Neural networks
Original Research Paper
Pattern Recognition
Real time
Signal,Image and Speech Processing
Symmetry
title A real-time high precision eye center localizer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20real-time%20high%20precision%20eye%20center%20localizer&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Poulopoulos,%20Nikolaos&rft.date=2022-04-01&rft.volume=19&rft.issue=2&rft.spage=475&rft.epage=486&rft.pages=475-486&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-022-01200-8&rft_dat=%3Cproquest_cross%3E2918677421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918677421&rft_id=info:pmid/&rfr_iscdi=true