Underwater trash detection algorithm based on improved YOLOv5s

Aiming at the problem of insufficient storage space and limited computing ability of underwater mobile devices, an underwater garbage detection algorithm based on an improved YOLOv5s algorithm is proposed. The algorithm replaces the feature extraction module of the YOLOv5s network with the lightweig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of real-time image processing 2022-10, Vol.19 (5), p.911-920
Hauptverfasser: Wu, ChunMing, Sun, YiQian, Wang, TiaoJun, Liu, YaLi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 920
container_issue 5
container_start_page 911
container_title Journal of real-time image processing
container_volume 19
creator Wu, ChunMing
Sun, YiQian
Wang, TiaoJun
Liu, YaLi
description Aiming at the problem of insufficient storage space and limited computing ability of underwater mobile devices, an underwater garbage detection algorithm based on an improved YOLOv5s algorithm is proposed. The algorithm replaces the feature extraction module of the YOLOv5s network with the lightweight network MobileNetv3; the Convolutional Block Attention Module (CBAM) is embedded in the network to improve the feature extraction ability of the network in two dimensions of space and channel. At the same time, the improved network is pruned to reduce the redundant parameters and further compress the model. The experimental results show that the detection accuracy of the approach can reach 97.5% based on one-ninth of the parameters of YOLOv5s, and the real-time detection speed on the CPU is 2.5 times that of YOLOv5s.
doi_str_mv 10.1007/s11554-022-01232-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918677418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918677418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-ff05afb17269a15a90b3b840c2dba11858aa1e3b270ac50a11cb5b86ef988c2c3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwueV2eSZjd7EaT4BYVe7MFTmGSz7ZZ2tyZpxX9vdEVvXmaGx_tgHmOXCNcIUN4ERCknOXCeA3KR5hEboSowVxyr498b4JSdhbAGKMpCyBG7XXS18-8Unc-ip7DKahedjW3fZbRZ9r6Nq21mKLg6S1C73fn-kO7X-Wx-kOGcnTS0Ce7iZ4_Z4uH-ZfqUz-aPz9O7WW4Fypg3DUhqDJa8qAglVWCEUROwvDaEqKQiQicML4GshARZI40qXFMpZbkVY3Y1-Kb4t70LUa_7ve9SpOZV-q0sJ6gSiw8s6_sQvGv0zrdb8h8aQX_1pIeedOpJf_ekIYnEIAqJ3C2d_7P-R_UJBpZqcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918677418</pqid></control><display><type>article</type><title>Underwater trash detection algorithm based on improved YOLOv5s</title><source>Springer Nature</source><source>ProQuest Central</source><creator>Wu, ChunMing ; Sun, YiQian ; Wang, TiaoJun ; Liu, YaLi</creator><creatorcontrib>Wu, ChunMing ; Sun, YiQian ; Wang, TiaoJun ; Liu, YaLi</creatorcontrib><description>Aiming at the problem of insufficient storage space and limited computing ability of underwater mobile devices, an underwater garbage detection algorithm based on an improved YOLOv5s algorithm is proposed. The algorithm replaces the feature extraction module of the YOLOv5s network with the lightweight network MobileNetv3; the Convolutional Block Attention Module (CBAM) is embedded in the network to improve the feature extraction ability of the network in two dimensions of space and channel. At the same time, the improved network is pruned to reduce the redundant parameters and further compress the model. The experimental results show that the detection accuracy of the approach can reach 97.5% based on one-ninth of the parameters of YOLOv5s, and the real-time detection speed on the CPU is 2.5 times that of YOLOv5s.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-022-01232-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Computer Graphics ; Computer Science ; Energy consumption ; Feature extraction ; Garbage ; Image Processing and Computer Vision ; Modules ; Multimedia Information Systems ; Object recognition ; Original Research Paper ; Parameters ; Pattern Recognition ; Signal,Image and Speech Processing ; Underwater</subject><ispartof>Journal of real-time image processing, 2022-10, Vol.19 (5), p.911-920</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-ff05afb17269a15a90b3b840c2dba11858aa1e3b270ac50a11cb5b86ef988c2c3</citedby><cites>FETCH-LOGICAL-c315t-ff05afb17269a15a90b3b840c2dba11858aa1e3b270ac50a11cb5b86ef988c2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11554-022-01232-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918677418?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Wu, ChunMing</creatorcontrib><creatorcontrib>Sun, YiQian</creatorcontrib><creatorcontrib>Wang, TiaoJun</creatorcontrib><creatorcontrib>Liu, YaLi</creatorcontrib><title>Underwater trash detection algorithm based on improved YOLOv5s</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>Aiming at the problem of insufficient storage space and limited computing ability of underwater mobile devices, an underwater garbage detection algorithm based on an improved YOLOv5s algorithm is proposed. The algorithm replaces the feature extraction module of the YOLOv5s network with the lightweight network MobileNetv3; the Convolutional Block Attention Module (CBAM) is embedded in the network to improve the feature extraction ability of the network in two dimensions of space and channel. At the same time, the improved network is pruned to reduce the redundant parameters and further compress the model. The experimental results show that the detection accuracy of the approach can reach 97.5% based on one-ninth of the parameters of YOLOv5s, and the real-time detection speed on the CPU is 2.5 times that of YOLOv5s.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Energy consumption</subject><subject>Feature extraction</subject><subject>Garbage</subject><subject>Image Processing and Computer Vision</subject><subject>Modules</subject><subject>Multimedia Information Systems</subject><subject>Object recognition</subject><subject>Original Research Paper</subject><subject>Parameters</subject><subject>Pattern Recognition</subject><subject>Signal,Image and Speech Processing</subject><subject>Underwater</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BTwueV2eSZjd7EaT4BYVe7MFTmGSz7ZZ2tyZpxX9vdEVvXmaGx_tgHmOXCNcIUN4ERCknOXCeA3KR5hEboSowVxyr498b4JSdhbAGKMpCyBG7XXS18-8Unc-ip7DKahedjW3fZbRZ9r6Nq21mKLg6S1C73fn-kO7X-Wx-kOGcnTS0Ce7iZ4_Z4uH-ZfqUz-aPz9O7WW4Fypg3DUhqDJa8qAglVWCEUROwvDaEqKQiQicML4GshARZI40qXFMpZbkVY3Y1-Kb4t70LUa_7ve9SpOZV-q0sJ6gSiw8s6_sQvGv0zrdb8h8aQX_1pIeedOpJf_ekIYnEIAqJ3C2d_7P-R_UJBpZqcQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Wu, ChunMing</creator><creator>Sun, YiQian</creator><creator>Wang, TiaoJun</creator><creator>Liu, YaLi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20221001</creationdate><title>Underwater trash detection algorithm based on improved YOLOv5s</title><author>Wu, ChunMing ; Sun, YiQian ; Wang, TiaoJun ; Liu, YaLi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-ff05afb17269a15a90b3b840c2dba11858aa1e3b270ac50a11cb5b86ef988c2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Energy consumption</topic><topic>Feature extraction</topic><topic>Garbage</topic><topic>Image Processing and Computer Vision</topic><topic>Modules</topic><topic>Multimedia Information Systems</topic><topic>Object recognition</topic><topic>Original Research Paper</topic><topic>Parameters</topic><topic>Pattern Recognition</topic><topic>Signal,Image and Speech Processing</topic><topic>Underwater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, ChunMing</creatorcontrib><creatorcontrib>Sun, YiQian</creatorcontrib><creatorcontrib>Wang, TiaoJun</creatorcontrib><creatorcontrib>Liu, YaLi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, ChunMing</au><au>Sun, YiQian</au><au>Wang, TiaoJun</au><au>Liu, YaLi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Underwater trash detection algorithm based on improved YOLOv5s</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>19</volume><issue>5</issue><spage>911</spage><epage>920</epage><pages>911-920</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>Aiming at the problem of insufficient storage space and limited computing ability of underwater mobile devices, an underwater garbage detection algorithm based on an improved YOLOv5s algorithm is proposed. The algorithm replaces the feature extraction module of the YOLOv5s network with the lightweight network MobileNetv3; the Convolutional Block Attention Module (CBAM) is embedded in the network to improve the feature extraction ability of the network in two dimensions of space and channel. At the same time, the improved network is pruned to reduce the redundant parameters and further compress the model. The experimental results show that the detection accuracy of the approach can reach 97.5% based on one-ninth of the parameters of YOLOv5s, and the real-time detection speed on the CPU is 2.5 times that of YOLOv5s.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-022-01232-0</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1861-8200
ispartof Journal of real-time image processing, 2022-10, Vol.19 (5), p.911-920
issn 1861-8200
1861-8219
language eng
recordid cdi_proquest_journals_2918677418
source Springer Nature; ProQuest Central
subjects Accuracy
Algorithms
Computer Graphics
Computer Science
Energy consumption
Feature extraction
Garbage
Image Processing and Computer Vision
Modules
Multimedia Information Systems
Object recognition
Original Research Paper
Parameters
Pattern Recognition
Signal,Image and Speech Processing
Underwater
title Underwater trash detection algorithm based on improved YOLOv5s
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Underwater%20trash%20detection%20algorithm%20based%20on%20improved%20YOLOv5s&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Wu,%20ChunMing&rft.date=2022-10-01&rft.volume=19&rft.issue=5&rft.spage=911&rft.epage=920&rft.pages=911-920&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-022-01232-0&rft_dat=%3Cproquest_cross%3E2918677418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918677418&rft_id=info:pmid/&rfr_iscdi=true