Design and implementation of a real-time LDWS with parameter space filtering for embedded platforms
In this work, a lane departure warning system (LDWS) algorithm for embedded platforms which has restricted resources is proposed. An LDWS consists of two main sub-functions which are lane detection and lane tracking. Although sophisticated methods have been developed for both sub-functions, they usu...
Gespeichert in:
Veröffentlicht in: | Journal of real-time image processing 2022-06, Vol.19 (3), p.663-673 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 673 |
---|---|
container_issue | 3 |
container_start_page | 663 |
container_title | Journal of real-time image processing |
container_volume | 19 |
creator | Selim, Erman Alci, Musa Uğur, Aybars |
description | In this work, a lane departure warning system (LDWS) algorithm for embedded platforms which has restricted resources is proposed. An LDWS consists of two main sub-functions which are lane detection and lane tracking. Although sophisticated methods have been developed for both sub-functions, they usually require high processing power and even GPU processing power. Therefore, they are not applicable for hardware with limited resources. In this work, Hough Transform (HT)-based lane detection algorithm is applied. The vulnerability of HT-based methods against misleading images is eliminated by the proposed filtering algorithm. Main differences of the proposed filtering algorithm from the classical methods in the literature are that it is applied in the parameter space rather than the image, and it is specialized only for determining lanes. In the lane tracking stage, the K-means clustering algorithm has been modified to operate online. In this way, the parameters of the detected lane can be followed adaptively during lane changing or overtaking. Real-time test results on embedded hardware demonstrated that the processing time does not exceed 41.67 ms with an accuracy of over 91.5%. |
doi_str_mv | 10.1007/s11554-022-01213-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918675893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918675893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a0c43d7cdb6c3e2b9b8a216e5ad6fe69e0c48d54920fbecddeaa3917b3d1ecf83</originalsourceid><addsrcrecordid>eNp9kMlKQzEUhoMoWKsv4CrgOpqhd8hSWicouFBxGXKTk5pyJ5MU8e1NvaI7V2f8_8P5EDpn9JJRWl1FxopiQSjnhDLOBBEHaMbqkpGaM3n4m1N6jE5i3FJaVqUoZsisIPpNj3Vvse_GFjrok05-6PHgsMYBdEuS7wCvV69P-MOnNzzqoDtIEHActQHsfJsL32-wGwKGrgFrweKx1Sk3uniKjpxuI5z9xDl6ub15Xt6T9ePdw_J6TYxgMhFNzULYytimNAJ4I5tac1ZCoW3poJSQ57UtFpJT14DJN7QWklWNsAyMq8UcXUy-YxjedxCT2g670OeTissMoCpqKfIWn7ZMGGIM4NQYfKfDp2JU7WGqCabKMNU3TLUXiUkUx_2jEP6s_1F9AezpeS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918675893</pqid></control><display><type>article</type><title>Design and implementation of a real-time LDWS with parameter space filtering for embedded platforms</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Selim, Erman ; Alci, Musa ; Uğur, Aybars</creator><creatorcontrib>Selim, Erman ; Alci, Musa ; Uğur, Aybars</creatorcontrib><description>In this work, a lane departure warning system (LDWS) algorithm for embedded platforms which has restricted resources is proposed. An LDWS consists of two main sub-functions which are lane detection and lane tracking. Although sophisticated methods have been developed for both sub-functions, they usually require high processing power and even GPU processing power. Therefore, they are not applicable for hardware with limited resources. In this work, Hough Transform (HT)-based lane detection algorithm is applied. The vulnerability of HT-based methods against misleading images is eliminated by the proposed filtering algorithm. Main differences of the proposed filtering algorithm from the classical methods in the literature are that it is applied in the parameter space rather than the image, and it is specialized only for determining lanes. In the lane tracking stage, the K-means clustering algorithm has been modified to operate online. In this way, the parameters of the detected lane can be followed adaptively during lane changing or overtaking. Real-time test results on embedded hardware demonstrated that the processing time does not exceed 41.67 ms with an accuracy of over 91.5%.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-022-01213-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Cameras ; Cluster analysis ; Clustering ; Computer Graphics ; Computer Science ; Filtration ; Hardware ; Hough transformation ; Image Processing and Computer Vision ; Lane keeping ; Methods ; Multimedia Information Systems ; Original Research Paper ; Parameter modification ; Pattern Recognition ; Platforms ; Real time ; Roads & highways ; Signal,Image and Speech Processing ; Tracking ; Vector quantization ; Vehicles ; Warning systems</subject><ispartof>Journal of real-time image processing, 2022-06, Vol.19 (3), p.663-673</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a0c43d7cdb6c3e2b9b8a216e5ad6fe69e0c48d54920fbecddeaa3917b3d1ecf83</citedby><cites>FETCH-LOGICAL-c319t-a0c43d7cdb6c3e2b9b8a216e5ad6fe69e0c48d54920fbecddeaa3917b3d1ecf83</cites><orcidid>0000-0003-3622-7672 ; 0000-0003-4479-0406 ; 0000-0002-5382-3460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11554-022-01213-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918675893?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Selim, Erman</creatorcontrib><creatorcontrib>Alci, Musa</creatorcontrib><creatorcontrib>Uğur, Aybars</creatorcontrib><title>Design and implementation of a real-time LDWS with parameter space filtering for embedded platforms</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>In this work, a lane departure warning system (LDWS) algorithm for embedded platforms which has restricted resources is proposed. An LDWS consists of two main sub-functions which are lane detection and lane tracking. Although sophisticated methods have been developed for both sub-functions, they usually require high processing power and even GPU processing power. Therefore, they are not applicable for hardware with limited resources. In this work, Hough Transform (HT)-based lane detection algorithm is applied. The vulnerability of HT-based methods against misleading images is eliminated by the proposed filtering algorithm. Main differences of the proposed filtering algorithm from the classical methods in the literature are that it is applied in the parameter space rather than the image, and it is specialized only for determining lanes. In the lane tracking stage, the K-means clustering algorithm has been modified to operate online. In this way, the parameters of the detected lane can be followed adaptively during lane changing or overtaking. Real-time test results on embedded hardware demonstrated that the processing time does not exceed 41.67 ms with an accuracy of over 91.5%.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Filtration</subject><subject>Hardware</subject><subject>Hough transformation</subject><subject>Image Processing and Computer Vision</subject><subject>Lane keeping</subject><subject>Methods</subject><subject>Multimedia Information Systems</subject><subject>Original Research Paper</subject><subject>Parameter modification</subject><subject>Pattern Recognition</subject><subject>Platforms</subject><subject>Real time</subject><subject>Roads & highways</subject><subject>Signal,Image and Speech Processing</subject><subject>Tracking</subject><subject>Vector quantization</subject><subject>Vehicles</subject><subject>Warning systems</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMlKQzEUhoMoWKsv4CrgOpqhd8hSWicouFBxGXKTk5pyJ5MU8e1NvaI7V2f8_8P5EDpn9JJRWl1FxopiQSjnhDLOBBEHaMbqkpGaM3n4m1N6jE5i3FJaVqUoZsisIPpNj3Vvse_GFjrok05-6PHgsMYBdEuS7wCvV69P-MOnNzzqoDtIEHActQHsfJsL32-wGwKGrgFrweKx1Sk3uniKjpxuI5z9xDl6ub15Xt6T9ePdw_J6TYxgMhFNzULYytimNAJ4I5tac1ZCoW3poJSQ57UtFpJT14DJN7QWklWNsAyMq8UcXUy-YxjedxCT2g670OeTissMoCpqKfIWn7ZMGGIM4NQYfKfDp2JU7WGqCabKMNU3TLUXiUkUx_2jEP6s_1F9AezpeS8</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Selim, Erman</creator><creator>Alci, Musa</creator><creator>Uğur, Aybars</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-3622-7672</orcidid><orcidid>https://orcid.org/0000-0003-4479-0406</orcidid><orcidid>https://orcid.org/0000-0002-5382-3460</orcidid></search><sort><creationdate>20220601</creationdate><title>Design and implementation of a real-time LDWS with parameter space filtering for embedded platforms</title><author>Selim, Erman ; Alci, Musa ; Uğur, Aybars</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a0c43d7cdb6c3e2b9b8a216e5ad6fe69e0c48d54920fbecddeaa3917b3d1ecf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Filtration</topic><topic>Hardware</topic><topic>Hough transformation</topic><topic>Image Processing and Computer Vision</topic><topic>Lane keeping</topic><topic>Methods</topic><topic>Multimedia Information Systems</topic><topic>Original Research Paper</topic><topic>Parameter modification</topic><topic>Pattern Recognition</topic><topic>Platforms</topic><topic>Real time</topic><topic>Roads & highways</topic><topic>Signal,Image and Speech Processing</topic><topic>Tracking</topic><topic>Vector quantization</topic><topic>Vehicles</topic><topic>Warning systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selim, Erman</creatorcontrib><creatorcontrib>Alci, Musa</creatorcontrib><creatorcontrib>Uğur, Aybars</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selim, Erman</au><au>Alci, Musa</au><au>Uğur, Aybars</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and implementation of a real-time LDWS with parameter space filtering for embedded platforms</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>19</volume><issue>3</issue><spage>663</spage><epage>673</epage><pages>663-673</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>In this work, a lane departure warning system (LDWS) algorithm for embedded platforms which has restricted resources is proposed. An LDWS consists of two main sub-functions which are lane detection and lane tracking. Although sophisticated methods have been developed for both sub-functions, they usually require high processing power and even GPU processing power. Therefore, they are not applicable for hardware with limited resources. In this work, Hough Transform (HT)-based lane detection algorithm is applied. The vulnerability of HT-based methods against misleading images is eliminated by the proposed filtering algorithm. Main differences of the proposed filtering algorithm from the classical methods in the literature are that it is applied in the parameter space rather than the image, and it is specialized only for determining lanes. In the lane tracking stage, the K-means clustering algorithm has been modified to operate online. In this way, the parameters of the detected lane can be followed adaptively during lane changing or overtaking. Real-time test results on embedded hardware demonstrated that the processing time does not exceed 41.67 ms with an accuracy of over 91.5%.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-022-01213-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3622-7672</orcidid><orcidid>https://orcid.org/0000-0003-4479-0406</orcidid><orcidid>https://orcid.org/0000-0002-5382-3460</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-8200 |
ispartof | Journal of real-time image processing, 2022-06, Vol.19 (3), p.663-673 |
issn | 1861-8200 1861-8219 |
language | eng |
recordid | cdi_proquest_journals_2918675893 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Accuracy Algorithms Cameras Cluster analysis Clustering Computer Graphics Computer Science Filtration Hardware Hough transformation Image Processing and Computer Vision Lane keeping Methods Multimedia Information Systems Original Research Paper Parameter modification Pattern Recognition Platforms Real time Roads & highways Signal,Image and Speech Processing Tracking Vector quantization Vehicles Warning systems |
title | Design and implementation of a real-time LDWS with parameter space filtering for embedded platforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20implementation%20of%20a%20real-time%20LDWS%20with%20parameter%20space%20filtering%20for%20embedded%20platforms&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Selim,%20Erman&rft.date=2022-06-01&rft.volume=19&rft.issue=3&rft.spage=663&rft.epage=673&rft.pages=663-673&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-022-01213-3&rft_dat=%3Cproquest_cross%3E2918675893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918675893&rft_id=info:pmid/&rfr_iscdi=true |