Design and implementation of a real-time LDWS with parameter space filtering for embedded platforms

In this work, a lane departure warning system (LDWS) algorithm for embedded platforms which has restricted resources is proposed. An LDWS consists of two main sub-functions which are lane detection and lane tracking. Although sophisticated methods have been developed for both sub-functions, they usu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of real-time image processing 2022-06, Vol.19 (3), p.663-673
Hauptverfasser: Selim, Erman, Alci, Musa, Uğur, Aybars
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 673
container_issue 3
container_start_page 663
container_title Journal of real-time image processing
container_volume 19
creator Selim, Erman
Alci, Musa
Uğur, Aybars
description In this work, a lane departure warning system (LDWS) algorithm for embedded platforms which has restricted resources is proposed. An LDWS consists of two main sub-functions which are lane detection and lane tracking. Although sophisticated methods have been developed for both sub-functions, they usually require high processing power and even GPU processing power. Therefore, they are not applicable for hardware with limited resources. In this work, Hough Transform (HT)-based lane detection algorithm is applied. The vulnerability of HT-based methods against misleading images is eliminated by the proposed filtering algorithm. Main differences of the proposed filtering algorithm from the classical methods in the literature are that it is applied in the parameter space rather than the image, and it is specialized only for determining lanes. In the lane tracking stage, the K-means clustering algorithm has been modified to operate online. In this way, the parameters of the detected lane can be followed adaptively during lane changing or overtaking. Real-time test results on embedded hardware demonstrated that the processing time does not exceed 41.67 ms with an accuracy of over 91.5%.
doi_str_mv 10.1007/s11554-022-01213-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918675893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918675893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a0c43d7cdb6c3e2b9b8a216e5ad6fe69e0c48d54920fbecddeaa3917b3d1ecf83</originalsourceid><addsrcrecordid>eNp9kMlKQzEUhoMoWKsv4CrgOpqhd8hSWicouFBxGXKTk5pyJ5MU8e1NvaI7V2f8_8P5EDpn9JJRWl1FxopiQSjnhDLOBBEHaMbqkpGaM3n4m1N6jE5i3FJaVqUoZsisIPpNj3Vvse_GFjrok05-6PHgsMYBdEuS7wCvV69P-MOnNzzqoDtIEHActQHsfJsL32-wGwKGrgFrweKx1Sk3uniKjpxuI5z9xDl6ub15Xt6T9ePdw_J6TYxgMhFNzULYytimNAJ4I5tac1ZCoW3poJSQ57UtFpJT14DJN7QWklWNsAyMq8UcXUy-YxjedxCT2g670OeTissMoCpqKfIWn7ZMGGIM4NQYfKfDp2JU7WGqCabKMNU3TLUXiUkUx_2jEP6s_1F9AezpeS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918675893</pqid></control><display><type>article</type><title>Design and implementation of a real-time LDWS with parameter space filtering for embedded platforms</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Selim, Erman ; Alci, Musa ; Uğur, Aybars</creator><creatorcontrib>Selim, Erman ; Alci, Musa ; Uğur, Aybars</creatorcontrib><description>In this work, a lane departure warning system (LDWS) algorithm for embedded platforms which has restricted resources is proposed. An LDWS consists of two main sub-functions which are lane detection and lane tracking. Although sophisticated methods have been developed for both sub-functions, they usually require high processing power and even GPU processing power. Therefore, they are not applicable for hardware with limited resources. In this work, Hough Transform (HT)-based lane detection algorithm is applied. The vulnerability of HT-based methods against misleading images is eliminated by the proposed filtering algorithm. Main differences of the proposed filtering algorithm from the classical methods in the literature are that it is applied in the parameter space rather than the image, and it is specialized only for determining lanes. In the lane tracking stage, the K-means clustering algorithm has been modified to operate online. In this way, the parameters of the detected lane can be followed adaptively during lane changing or overtaking. Real-time test results on embedded hardware demonstrated that the processing time does not exceed 41.67 ms with an accuracy of over 91.5%.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-022-01213-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Cameras ; Cluster analysis ; Clustering ; Computer Graphics ; Computer Science ; Filtration ; Hardware ; Hough transformation ; Image Processing and Computer Vision ; Lane keeping ; Methods ; Multimedia Information Systems ; Original Research Paper ; Parameter modification ; Pattern Recognition ; Platforms ; Real time ; Roads &amp; highways ; Signal,Image and Speech Processing ; Tracking ; Vector quantization ; Vehicles ; Warning systems</subject><ispartof>Journal of real-time image processing, 2022-06, Vol.19 (3), p.663-673</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a0c43d7cdb6c3e2b9b8a216e5ad6fe69e0c48d54920fbecddeaa3917b3d1ecf83</citedby><cites>FETCH-LOGICAL-c319t-a0c43d7cdb6c3e2b9b8a216e5ad6fe69e0c48d54920fbecddeaa3917b3d1ecf83</cites><orcidid>0000-0003-3622-7672 ; 0000-0003-4479-0406 ; 0000-0002-5382-3460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11554-022-01213-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918675893?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Selim, Erman</creatorcontrib><creatorcontrib>Alci, Musa</creatorcontrib><creatorcontrib>Uğur, Aybars</creatorcontrib><title>Design and implementation of a real-time LDWS with parameter space filtering for embedded platforms</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>In this work, a lane departure warning system (LDWS) algorithm for embedded platforms which has restricted resources is proposed. An LDWS consists of two main sub-functions which are lane detection and lane tracking. Although sophisticated methods have been developed for both sub-functions, they usually require high processing power and even GPU processing power. Therefore, they are not applicable for hardware with limited resources. In this work, Hough Transform (HT)-based lane detection algorithm is applied. The vulnerability of HT-based methods against misleading images is eliminated by the proposed filtering algorithm. Main differences of the proposed filtering algorithm from the classical methods in the literature are that it is applied in the parameter space rather than the image, and it is specialized only for determining lanes. In the lane tracking stage, the K-means clustering algorithm has been modified to operate online. In this way, the parameters of the detected lane can be followed adaptively during lane changing or overtaking. Real-time test results on embedded hardware demonstrated that the processing time does not exceed 41.67 ms with an accuracy of over 91.5%.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Filtration</subject><subject>Hardware</subject><subject>Hough transformation</subject><subject>Image Processing and Computer Vision</subject><subject>Lane keeping</subject><subject>Methods</subject><subject>Multimedia Information Systems</subject><subject>Original Research Paper</subject><subject>Parameter modification</subject><subject>Pattern Recognition</subject><subject>Platforms</subject><subject>Real time</subject><subject>Roads &amp; highways</subject><subject>Signal,Image and Speech Processing</subject><subject>Tracking</subject><subject>Vector quantization</subject><subject>Vehicles</subject><subject>Warning systems</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMlKQzEUhoMoWKsv4CrgOpqhd8hSWicouFBxGXKTk5pyJ5MU8e1NvaI7V2f8_8P5EDpn9JJRWl1FxopiQSjnhDLOBBEHaMbqkpGaM3n4m1N6jE5i3FJaVqUoZsisIPpNj3Vvse_GFjrok05-6PHgsMYBdEuS7wCvV69P-MOnNzzqoDtIEHActQHsfJsL32-wGwKGrgFrweKx1Sk3uniKjpxuI5z9xDl6ub15Xt6T9ePdw_J6TYxgMhFNzULYytimNAJ4I5tac1ZCoW3poJSQ57UtFpJT14DJN7QWklWNsAyMq8UcXUy-YxjedxCT2g670OeTissMoCpqKfIWn7ZMGGIM4NQYfKfDp2JU7WGqCabKMNU3TLUXiUkUx_2jEP6s_1F9AezpeS8</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Selim, Erman</creator><creator>Alci, Musa</creator><creator>Uğur, Aybars</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-3622-7672</orcidid><orcidid>https://orcid.org/0000-0003-4479-0406</orcidid><orcidid>https://orcid.org/0000-0002-5382-3460</orcidid></search><sort><creationdate>20220601</creationdate><title>Design and implementation of a real-time LDWS with parameter space filtering for embedded platforms</title><author>Selim, Erman ; Alci, Musa ; Uğur, Aybars</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a0c43d7cdb6c3e2b9b8a216e5ad6fe69e0c48d54920fbecddeaa3917b3d1ecf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Filtration</topic><topic>Hardware</topic><topic>Hough transformation</topic><topic>Image Processing and Computer Vision</topic><topic>Lane keeping</topic><topic>Methods</topic><topic>Multimedia Information Systems</topic><topic>Original Research Paper</topic><topic>Parameter modification</topic><topic>Pattern Recognition</topic><topic>Platforms</topic><topic>Real time</topic><topic>Roads &amp; highways</topic><topic>Signal,Image and Speech Processing</topic><topic>Tracking</topic><topic>Vector quantization</topic><topic>Vehicles</topic><topic>Warning systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selim, Erman</creatorcontrib><creatorcontrib>Alci, Musa</creatorcontrib><creatorcontrib>Uğur, Aybars</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selim, Erman</au><au>Alci, Musa</au><au>Uğur, Aybars</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and implementation of a real-time LDWS with parameter space filtering for embedded platforms</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>19</volume><issue>3</issue><spage>663</spage><epage>673</epage><pages>663-673</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>In this work, a lane departure warning system (LDWS) algorithm for embedded platforms which has restricted resources is proposed. An LDWS consists of two main sub-functions which are lane detection and lane tracking. Although sophisticated methods have been developed for both sub-functions, they usually require high processing power and even GPU processing power. Therefore, they are not applicable for hardware with limited resources. In this work, Hough Transform (HT)-based lane detection algorithm is applied. The vulnerability of HT-based methods against misleading images is eliminated by the proposed filtering algorithm. Main differences of the proposed filtering algorithm from the classical methods in the literature are that it is applied in the parameter space rather than the image, and it is specialized only for determining lanes. In the lane tracking stage, the K-means clustering algorithm has been modified to operate online. In this way, the parameters of the detected lane can be followed adaptively during lane changing or overtaking. Real-time test results on embedded hardware demonstrated that the processing time does not exceed 41.67 ms with an accuracy of over 91.5%.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-022-01213-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3622-7672</orcidid><orcidid>https://orcid.org/0000-0003-4479-0406</orcidid><orcidid>https://orcid.org/0000-0002-5382-3460</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-8200
ispartof Journal of real-time image processing, 2022-06, Vol.19 (3), p.663-673
issn 1861-8200
1861-8219
language eng
recordid cdi_proquest_journals_2918675893
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Accuracy
Algorithms
Cameras
Cluster analysis
Clustering
Computer Graphics
Computer Science
Filtration
Hardware
Hough transformation
Image Processing and Computer Vision
Lane keeping
Methods
Multimedia Information Systems
Original Research Paper
Parameter modification
Pattern Recognition
Platforms
Real time
Roads & highways
Signal,Image and Speech Processing
Tracking
Vector quantization
Vehicles
Warning systems
title Design and implementation of a real-time LDWS with parameter space filtering for embedded platforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20implementation%20of%20a%20real-time%20LDWS%20with%20parameter%20space%20filtering%20for%20embedded%20platforms&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Selim,%20Erman&rft.date=2022-06-01&rft.volume=19&rft.issue=3&rft.spage=663&rft.epage=673&rft.pages=663-673&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-022-01213-3&rft_dat=%3Cproquest_cross%3E2918675893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918675893&rft_id=info:pmid/&rfr_iscdi=true