Convolution neural network with low operation FLOPS and high accuracy for image recognition

The convolution neural network makes deeper and wider for better accuracy, but requires higher computations. When the neural network goes deeper, some information loss is more. To improve this drawback, the residual structure was developed to connect the information of the previous layers. This is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of real-time image processing 2021-08, Vol.18 (4), p.1309-1319
Hauptverfasser: Hsia, Shih-Chang, Wang, Szu-Hong, Chang, Chuan-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1319
container_issue 4
container_start_page 1309
container_title Journal of real-time image processing
container_volume 18
creator Hsia, Shih-Chang
Wang, Szu-Hong
Chang, Chuan-Yu
description The convolution neural network makes deeper and wider for better accuracy, but requires higher computations. When the neural network goes deeper, some information loss is more. To improve this drawback, the residual structure was developed to connect the information of the previous layers. This is a good solution to prevent the loss of information, but it requires a huge amount of parameters for deeper layer operations. In this study, the fast computational algorithm is proposed to reduce the parameters and to save the operations with the modification of DenseNet deep layer block. With channel merging procedures, this solution can reduce the dilemma of multiple growth of the parameter quantity for deeper layer. This approach is not only to reduce the parameters and FLOPs, but also to keep high accuracy. Comparisons with the original DenseNet and RetNet-110, the parameters can be efficiency reduced about 30–70%, while the accuracy degrades little. The lightweight network can be implemented on a low-cost embedded system for real-time application.
doi_str_mv 10.1007/s11554-021-01140-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918675839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918675839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-2aebfdef7ef3cf4ae9af3bf300a86239244de757b3dba99b8526adf7b3e898583</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczQf-5EcpVgVChXUk4eQzSbbrWtSk11L_71pV_TmaWbged-ZeQG4JPiaYFzeRELyPEOYEoQJyTASR2BCeEEQp0Qc__YYn4KzGNcYF2XB8gl4m3n35buhb72DzgxBdan0Wx_e4bbtV7DzW-g3JqgDMV8sn56hcjVctc0KKq2TQu-g9QG2H6oxMBjtG9fu6XNwYlUXzcVPnYLX-d3L7AEtlvePs9sF0qzgPaLKVLY2tjSWaZspI5RllWUYK15QJmiW1abMy4rVlRKi4jktVG3TbLjgOWdTcDX6boL_HEzs5doPwaWVkor0eJkYkSg6Ujr4GIOxchPSyWEnCZb7EOUYokwhykOIci9ioygm2DUm_Fn_o_oGFA52Sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918675839</pqid></control><display><type>article</type><title>Convolution neural network with low operation FLOPS and high accuracy for image recognition</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Hsia, Shih-Chang ; Wang, Szu-Hong ; Chang, Chuan-Yu</creator><creatorcontrib>Hsia, Shih-Chang ; Wang, Szu-Hong ; Chang, Chuan-Yu</creatorcontrib><description>The convolution neural network makes deeper and wider for better accuracy, but requires higher computations. When the neural network goes deeper, some information loss is more. To improve this drawback, the residual structure was developed to connect the information of the previous layers. This is a good solution to prevent the loss of information, but it requires a huge amount of parameters for deeper layer operations. In this study, the fast computational algorithm is proposed to reduce the parameters and to save the operations with the modification of DenseNet deep layer block. With channel merging procedures, this solution can reduce the dilemma of multiple growth of the parameter quantity for deeper layer. This approach is not only to reduce the parameters and FLOPs, but also to keep high accuracy. Comparisons with the original DenseNet and RetNet-110, the parameters can be efficiency reduced about 30–70%, while the accuracy degrades little. The lightweight network can be implemented on a low-cost embedded system for real-time application.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-021-01140-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Computer Graphics ; Computer Science ; Data compression ; Electron microscopes ; Field programmable gate arrays ; Image Processing and Computer Vision ; Multimedia Information Systems ; Neural networks ; Parameter modification ; Pattern Recognition ; Signal,Image and Speech Processing ; Special Issue Paper</subject><ispartof>Journal of real-time image processing, 2021-08, Vol.18 (4), p.1309-1319</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-2aebfdef7ef3cf4ae9af3bf300a86239244de757b3dba99b8526adf7b3e898583</citedby><cites>FETCH-LOGICAL-c368t-2aebfdef7ef3cf4ae9af3bf300a86239244de757b3dba99b8526adf7b3e898583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11554-021-01140-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918675839?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Hsia, Shih-Chang</creatorcontrib><creatorcontrib>Wang, Szu-Hong</creatorcontrib><creatorcontrib>Chang, Chuan-Yu</creatorcontrib><title>Convolution neural network with low operation FLOPS and high accuracy for image recognition</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>The convolution neural network makes deeper and wider for better accuracy, but requires higher computations. When the neural network goes deeper, some information loss is more. To improve this drawback, the residual structure was developed to connect the information of the previous layers. This is a good solution to prevent the loss of information, but it requires a huge amount of parameters for deeper layer operations. In this study, the fast computational algorithm is proposed to reduce the parameters and to save the operations with the modification of DenseNet deep layer block. With channel merging procedures, this solution can reduce the dilemma of multiple growth of the parameter quantity for deeper layer. This approach is not only to reduce the parameters and FLOPs, but also to keep high accuracy. Comparisons with the original DenseNet and RetNet-110, the parameters can be efficiency reduced about 30–70%, while the accuracy degrades little. The lightweight network can be implemented on a low-cost embedded system for real-time application.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Data compression</subject><subject>Electron microscopes</subject><subject>Field programmable gate arrays</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Parameter modification</subject><subject>Pattern Recognition</subject><subject>Signal,Image and Speech Processing</subject><subject>Special Issue Paper</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczQf-5EcpVgVChXUk4eQzSbbrWtSk11L_71pV_TmaWbged-ZeQG4JPiaYFzeRELyPEOYEoQJyTASR2BCeEEQp0Qc__YYn4KzGNcYF2XB8gl4m3n35buhb72DzgxBdan0Wx_e4bbtV7DzW-g3JqgDMV8sn56hcjVctc0KKq2TQu-g9QG2H6oxMBjtG9fu6XNwYlUXzcVPnYLX-d3L7AEtlvePs9sF0qzgPaLKVLY2tjSWaZspI5RllWUYK15QJmiW1abMy4rVlRKi4jktVG3TbLjgOWdTcDX6boL_HEzs5doPwaWVkor0eJkYkSg6Ujr4GIOxchPSyWEnCZb7EOUYokwhykOIci9ioygm2DUm_Fn_o_oGFA52Sw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Hsia, Shih-Chang</creator><creator>Wang, Szu-Hong</creator><creator>Chang, Chuan-Yu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210801</creationdate><title>Convolution neural network with low operation FLOPS and high accuracy for image recognition</title><author>Hsia, Shih-Chang ; Wang, Szu-Hong ; Chang, Chuan-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-2aebfdef7ef3cf4ae9af3bf300a86239244de757b3dba99b8526adf7b3e898583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Data compression</topic><topic>Electron microscopes</topic><topic>Field programmable gate arrays</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Parameter modification</topic><topic>Pattern Recognition</topic><topic>Signal,Image and Speech Processing</topic><topic>Special Issue Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsia, Shih-Chang</creatorcontrib><creatorcontrib>Wang, Szu-Hong</creatorcontrib><creatorcontrib>Chang, Chuan-Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsia, Shih-Chang</au><au>Wang, Szu-Hong</au><au>Chang, Chuan-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolution neural network with low operation FLOPS and high accuracy for image recognition</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>18</volume><issue>4</issue><spage>1309</spage><epage>1319</epage><pages>1309-1319</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>The convolution neural network makes deeper and wider for better accuracy, but requires higher computations. When the neural network goes deeper, some information loss is more. To improve this drawback, the residual structure was developed to connect the information of the previous layers. This is a good solution to prevent the loss of information, but it requires a huge amount of parameters for deeper layer operations. In this study, the fast computational algorithm is proposed to reduce the parameters and to save the operations with the modification of DenseNet deep layer block. With channel merging procedures, this solution can reduce the dilemma of multiple growth of the parameter quantity for deeper layer. This approach is not only to reduce the parameters and FLOPs, but also to keep high accuracy. Comparisons with the original DenseNet and RetNet-110, the parameters can be efficiency reduced about 30–70%, while the accuracy degrades little. The lightweight network can be implemented on a low-cost embedded system for real-time application.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-021-01140-9</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1861-8200
ispartof Journal of real-time image processing, 2021-08, Vol.18 (4), p.1309-1319
issn 1861-8200
1861-8219
language eng
recordid cdi_proquest_journals_2918675839
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Computer Graphics
Computer Science
Data compression
Electron microscopes
Field programmable gate arrays
Image Processing and Computer Vision
Multimedia Information Systems
Neural networks
Parameter modification
Pattern Recognition
Signal,Image and Speech Processing
Special Issue Paper
title Convolution neural network with low operation FLOPS and high accuracy for image recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolution%20neural%20network%20with%20low%20operation%20FLOPS%20and%20high%20accuracy%20for%20image%20recognition&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Hsia,%20Shih-Chang&rft.date=2021-08-01&rft.volume=18&rft.issue=4&rft.spage=1309&rft.epage=1319&rft.pages=1309-1319&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-021-01140-9&rft_dat=%3Cproquest_cross%3E2918675839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918675839&rft_id=info:pmid/&rfr_iscdi=true