Fast video encoding based on random forests

Machine learning approaches have been increasingly used to reduce the high computational complexity of high-efficiency video coding (HEVC), as this is a major limiting factor for real-time implementations, due to the decision process required to find optimal coding modes and partition sizes for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of real-time image processing 2020-08, Vol.17 (4), p.1029-1049
Hauptverfasser: Tahir, Muhammad, Taj, Imtiaz A., Assuncao, Pedro A., Asif, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1049
container_issue 4
container_start_page 1029
container_title Journal of real-time image processing
container_volume 17
creator Tahir, Muhammad
Taj, Imtiaz A.
Assuncao, Pedro A.
Asif, Muhammad
description Machine learning approaches have been increasingly used to reduce the high computational complexity of high-efficiency video coding (HEVC), as this is a major limiting factor for real-time implementations, due to the decision process required to find optimal coding modes and partition sizes for the quad-tree data structures defined by the standard. This paper proposes a systematic approach to reduce the computational complexity of HEVC based on an ensemble of online and offline Random Forests classifiers. A reduced set of features for training the Random Forests classifier is proposed, based on the rankings obtained from information gain and a wrapper-based approach. The best model parameters are also obtained through a consistent and generalizable method. The proposed Random Forests classifier is used to model the coding unit and transform unit-splitting decision and the SKIP-mode prediction, as binary classification problems, taking advantage from the combination of online and offline approaches, which adapts better to the dynamic characteristics of video content. Experimental results show that, on average, the proposed approach reduces the computational complexity of HEVC by 62.64% for the random access (RA) profile and 54.57% for the low-delay (LD) main profile, with an increase in BD-Rate of 2.58% for RA and 2.97% for LD, respectively. These results outperform the previous works also using ensemble classifiers for the same purpose.
doi_str_mv 10.1007/s11554-019-00854-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918675766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918675766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8ab5e99edec70bedb46d2c5f18dd40e8ea2518688289e97ea1f35a91361574ce3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFa_gKeAR4nObLL_jlJsFQpe9LxsspOSYrN1NxX89q5G9OZp3uH93hseY5cINwigbhOiEHUJaEoAnRUesRlqiaXmaI5_NcApO0tpCyCVrMSMXS9dGov33lMoaGiD74dN0bhEvghDEd3gw67oQqQ0pnN20rnXRBc_d85elvfPi4dy_bR6XNyty7ZCM5baNYKMIU-tgoZ8U0vPW9Gh9r4G0uS4yO9ozbUho8hhVwlnsJIoVN1SNWdXU-4-hrdDbrbbcIhDrrTcZFIJJWV28cnVxpBSpM7uY79z8cMi2K9R7DSKzaPY71EsZqiaoJTNw4biX_Q_1Cexy2Np</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918675766</pqid></control><display><type>article</type><title>Fast video encoding based on random forests</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Tahir, Muhammad ; Taj, Imtiaz A. ; Assuncao, Pedro A. ; Asif, Muhammad</creator><creatorcontrib>Tahir, Muhammad ; Taj, Imtiaz A. ; Assuncao, Pedro A. ; Asif, Muhammad</creatorcontrib><description>Machine learning approaches have been increasingly used to reduce the high computational complexity of high-efficiency video coding (HEVC), as this is a major limiting factor for real-time implementations, due to the decision process required to find optimal coding modes and partition sizes for the quad-tree data structures defined by the standard. This paper proposes a systematic approach to reduce the computational complexity of HEVC based on an ensemble of online and offline Random Forests classifiers. A reduced set of features for training the Random Forests classifier is proposed, based on the rankings obtained from information gain and a wrapper-based approach. The best model parameters are also obtained through a consistent and generalizable method. The proposed Random Forests classifier is used to model the coding unit and transform unit-splitting decision and the SKIP-mode prediction, as binary classification problems, taking advantage from the combination of online and offline approaches, which adapts better to the dynamic characteristics of video content. Experimental results show that, on average, the proposed approach reduces the computational complexity of HEVC by 62.64% for the random access (RA) profile and 54.57% for the low-delay (LD) main profile, with an increase in BD-Rate of 2.58% for RA and 2.97% for LD, respectively. These results outperform the previous works also using ensemble classifiers for the same purpose.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-019-00854-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Classification ; Classifiers ; Complexity ; Computer Graphics ; Computer Science ; Data structures ; Decision theory ; Decision trees ; Distance learning ; Dynamic characteristics ; Feature selection ; Image Processing and Computer Vision ; Machine learning ; Multimedia Information Systems ; Original Research Paper ; Pattern Recognition ; Random access ; Signal,Image and Speech Processing ; Support vector machines ; Video compression</subject><ispartof>Journal of real-time image processing, 2020-08, Vol.17 (4), p.1029-1049</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8ab5e99edec70bedb46d2c5f18dd40e8ea2518688289e97ea1f35a91361574ce3</citedby><cites>FETCH-LOGICAL-c319t-8ab5e99edec70bedb46d2c5f18dd40e8ea2518688289e97ea1f35a91361574ce3</cites><orcidid>0000-0002-8827-2558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11554-019-00854-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918675766?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Tahir, Muhammad</creatorcontrib><creatorcontrib>Taj, Imtiaz A.</creatorcontrib><creatorcontrib>Assuncao, Pedro A.</creatorcontrib><creatorcontrib>Asif, Muhammad</creatorcontrib><title>Fast video encoding based on random forests</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>Machine learning approaches have been increasingly used to reduce the high computational complexity of high-efficiency video coding (HEVC), as this is a major limiting factor for real-time implementations, due to the decision process required to find optimal coding modes and partition sizes for the quad-tree data structures defined by the standard. This paper proposes a systematic approach to reduce the computational complexity of HEVC based on an ensemble of online and offline Random Forests classifiers. A reduced set of features for training the Random Forests classifier is proposed, based on the rankings obtained from information gain and a wrapper-based approach. The best model parameters are also obtained through a consistent and generalizable method. The proposed Random Forests classifier is used to model the coding unit and transform unit-splitting decision and the SKIP-mode prediction, as binary classification problems, taking advantage from the combination of online and offline approaches, which adapts better to the dynamic characteristics of video content. Experimental results show that, on average, the proposed approach reduces the computational complexity of HEVC by 62.64% for the random access (RA) profile and 54.57% for the low-delay (LD) main profile, with an increase in BD-Rate of 2.58% for RA and 2.97% for LD, respectively. These results outperform the previous works also using ensemble classifiers for the same purpose.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Complexity</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Data structures</subject><subject>Decision theory</subject><subject>Decision trees</subject><subject>Distance learning</subject><subject>Dynamic characteristics</subject><subject>Feature selection</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Multimedia Information Systems</subject><subject>Original Research Paper</subject><subject>Pattern Recognition</subject><subject>Random access</subject><subject>Signal,Image and Speech Processing</subject><subject>Support vector machines</subject><subject>Video compression</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9Lw0AQxRdRsFa_gKeAR4nObLL_jlJsFQpe9LxsspOSYrN1NxX89q5G9OZp3uH93hseY5cINwigbhOiEHUJaEoAnRUesRlqiaXmaI5_NcApO0tpCyCVrMSMXS9dGov33lMoaGiD74dN0bhEvghDEd3gw67oQqQ0pnN20rnXRBc_d85elvfPi4dy_bR6XNyty7ZCM5baNYKMIU-tgoZ8U0vPW9Gh9r4G0uS4yO9ozbUho8hhVwlnsJIoVN1SNWdXU-4-hrdDbrbbcIhDrrTcZFIJJWV28cnVxpBSpM7uY79z8cMi2K9R7DSKzaPY71EsZqiaoJTNw4biX_Q_1Cexy2Np</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Tahir, Muhammad</creator><creator>Taj, Imtiaz A.</creator><creator>Assuncao, Pedro A.</creator><creator>Asif, Muhammad</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8827-2558</orcidid></search><sort><creationdate>20200801</creationdate><title>Fast video encoding based on random forests</title><author>Tahir, Muhammad ; Taj, Imtiaz A. ; Assuncao, Pedro A. ; Asif, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8ab5e99edec70bedb46d2c5f18dd40e8ea2518688289e97ea1f35a91361574ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Complexity</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Data structures</topic><topic>Decision theory</topic><topic>Decision trees</topic><topic>Distance learning</topic><topic>Dynamic characteristics</topic><topic>Feature selection</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Multimedia Information Systems</topic><topic>Original Research Paper</topic><topic>Pattern Recognition</topic><topic>Random access</topic><topic>Signal,Image and Speech Processing</topic><topic>Support vector machines</topic><topic>Video compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tahir, Muhammad</creatorcontrib><creatorcontrib>Taj, Imtiaz A.</creatorcontrib><creatorcontrib>Assuncao, Pedro A.</creatorcontrib><creatorcontrib>Asif, Muhammad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tahir, Muhammad</au><au>Taj, Imtiaz A.</au><au>Assuncao, Pedro A.</au><au>Asif, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast video encoding based on random forests</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>17</volume><issue>4</issue><spage>1029</spage><epage>1049</epage><pages>1029-1049</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>Machine learning approaches have been increasingly used to reduce the high computational complexity of high-efficiency video coding (HEVC), as this is a major limiting factor for real-time implementations, due to the decision process required to find optimal coding modes and partition sizes for the quad-tree data structures defined by the standard. This paper proposes a systematic approach to reduce the computational complexity of HEVC based on an ensemble of online and offline Random Forests classifiers. A reduced set of features for training the Random Forests classifier is proposed, based on the rankings obtained from information gain and a wrapper-based approach. The best model parameters are also obtained through a consistent and generalizable method. The proposed Random Forests classifier is used to model the coding unit and transform unit-splitting decision and the SKIP-mode prediction, as binary classification problems, taking advantage from the combination of online and offline approaches, which adapts better to the dynamic characteristics of video content. Experimental results show that, on average, the proposed approach reduces the computational complexity of HEVC by 62.64% for the random access (RA) profile and 54.57% for the low-delay (LD) main profile, with an increase in BD-Rate of 2.58% for RA and 2.97% for LD, respectively. These results outperform the previous works also using ensemble classifiers for the same purpose.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-019-00854-1</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8827-2558</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-8200
ispartof Journal of real-time image processing, 2020-08, Vol.17 (4), p.1029-1049
issn 1861-8200
1861-8219
language eng
recordid cdi_proquest_journals_2918675766
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Classification
Classifiers
Complexity
Computer Graphics
Computer Science
Data structures
Decision theory
Decision trees
Distance learning
Dynamic characteristics
Feature selection
Image Processing and Computer Vision
Machine learning
Multimedia Information Systems
Original Research Paper
Pattern Recognition
Random access
Signal,Image and Speech Processing
Support vector machines
Video compression
title Fast video encoding based on random forests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20video%20encoding%20based%20on%20random%20forests&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Tahir,%20Muhammad&rft.date=2020-08-01&rft.volume=17&rft.issue=4&rft.spage=1029&rft.epage=1049&rft.pages=1029-1049&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-019-00854-1&rft_dat=%3Cproquest_cross%3E2918675766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918675766&rft_id=info:pmid/&rfr_iscdi=true