A dedicated hardware accelerator for real-time acceleration of YOLOv2
In recent years, dedicated hardware accelerators for the acceleration of the convolutional neural network (CNN) have been extensively studied. Although many studies have presented efficient designs on FPGAs for image classification neural network models such as AlexNet and VGG, there are still littl...
Gespeichert in:
Veröffentlicht in: | Journal of real-time image processing 2021-06, Vol.18 (3), p.481-492 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 492 |
---|---|
container_issue | 3 |
container_start_page | 481 |
container_title | Journal of real-time image processing |
container_volume | 18 |
creator | Xu, Ke Wang, Xiaoyun Liu, Xinyang Cao, Changfeng Li, Huolin Peng, Haiyong Wang, Dong |
description | In recent years, dedicated hardware accelerators for the acceleration of the convolutional neural network (CNN) have been extensively studied. Although many studies have presented efficient designs on FPGAs for image classification neural network models such as AlexNet and VGG, there are still little implementations for CNN-based object detection applications. This paper presents an OpenCL-based high-throughput FPGA accelerator for the YOLOv2 object detection algorithm on Arria-10 GX1150 FPGA. The proposed hardware architecture adopts a scalable pipeline design to support multi-resolution input image and full 8-bit fixed-point datapath to improve hardware resource utilization. Layer fusion technology that merges the convolution, batch normalization and Leaky-ReLU is also developed to avoid transmission of intermediate data between FPGA and external memory. Experimental results show that the final design achieves a peak throughput of 566 GOP/s under the working frequency of 190 MHz. The accelerator can execute YOLOv2 inference computation (
288
×
288
resolution) and tiny YOLOv2 (
416
×
416
resolution) at the speed of 35 and 71 FPS, respectively. |
doi_str_mv | 10.1007/s11554-020-00977-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918675736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918675736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-8126dc34ea818e9046a83c885122c47faf7f26aef41e81357ad0599d6b3b36fb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2XzssRS_oNCLHjyFNJnolrZbk63Ff290RT15GGZg3vcd5iHknMElA9BXmTEpawocKECjNd0fkBEzilHDWXP4MwMck5OclwBKKyFH5HpSBQytdz2G6sWlsHcJK-c9rjC5vktVLJXQrWjfrv9s2m5TdbF6ms_mb_yUHEW3ynj23cfk8eb6YXpHZ_Pb--lkRr0wsqeGcRW8qNEZZrCBWjkjvDGSce5rHV3UkSuHsWZomJDaBZBNE9RCLISKCzEmF0PuNnWvO8y9XXa7tCknLW_Ki1pqoYqKDyqfupwTRrtN7dqld8vAfuKyAy5bcNkvXHZfTGIw5SLePGP6jf7H9QHQK2y9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918675736</pqid></control><display><type>article</type><title>A dedicated hardware accelerator for real-time acceleration of YOLOv2</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Xu, Ke ; Wang, Xiaoyun ; Liu, Xinyang ; Cao, Changfeng ; Li, Huolin ; Peng, Haiyong ; Wang, Dong</creator><creatorcontrib>Xu, Ke ; Wang, Xiaoyun ; Liu, Xinyang ; Cao, Changfeng ; Li, Huolin ; Peng, Haiyong ; Wang, Dong</creatorcontrib><description>In recent years, dedicated hardware accelerators for the acceleration of the convolutional neural network (CNN) have been extensively studied. Although many studies have presented efficient designs on FPGAs for image classification neural network models such as AlexNet and VGG, there are still little implementations for CNN-based object detection applications. This paper presents an OpenCL-based high-throughput FPGA accelerator for the YOLOv2 object detection algorithm on Arria-10 GX1150 FPGA. The proposed hardware architecture adopts a scalable pipeline design to support multi-resolution input image and full 8-bit fixed-point datapath to improve hardware resource utilization. Layer fusion technology that merges the convolution, batch normalization and Leaky-ReLU is also developed to avoid transmission of intermediate data between FPGA and external memory. Experimental results show that the final design achieves a peak throughput of 566 GOP/s under the working frequency of 190 MHz. The accelerator can execute YOLOv2 inference computation (
288
×
288
resolution) and tiny YOLOv2 (
416
×
416
resolution) at the speed of 35 and 71 FPS, respectively.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-020-00977-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acceleration ; Accuracy ; Algorithms ; Artificial neural networks ; Bandwidths ; Circuits ; Computer Graphics ; Computer Science ; Design ; Field programmable gate arrays ; Hardware ; Image classification ; Image Processing and Computer Vision ; Multimedia Information Systems ; Neural networks ; Object recognition ; Original Research Paper ; Pattern Recognition ; Performance evaluation ; Pipeline design ; Power ; Resource utilization ; Signal,Image and Speech Processing ; Workloads</subject><ispartof>Journal of real-time image processing, 2021-06, Vol.18 (3), p.481-492</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-8126dc34ea818e9046a83c885122c47faf7f26aef41e81357ad0599d6b3b36fb3</citedby><cites>FETCH-LOGICAL-c385t-8126dc34ea818e9046a83c885122c47faf7f26aef41e81357ad0599d6b3b36fb3</cites><orcidid>0000-0002-0068-8824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11554-020-00977-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918675736?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Wang, Xiaoyun</creatorcontrib><creatorcontrib>Liu, Xinyang</creatorcontrib><creatorcontrib>Cao, Changfeng</creatorcontrib><creatorcontrib>Li, Huolin</creatorcontrib><creatorcontrib>Peng, Haiyong</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><title>A dedicated hardware accelerator for real-time acceleration of YOLOv2</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>In recent years, dedicated hardware accelerators for the acceleration of the convolutional neural network (CNN) have been extensively studied. Although many studies have presented efficient designs on FPGAs for image classification neural network models such as AlexNet and VGG, there are still little implementations for CNN-based object detection applications. This paper presents an OpenCL-based high-throughput FPGA accelerator for the YOLOv2 object detection algorithm on Arria-10 GX1150 FPGA. The proposed hardware architecture adopts a scalable pipeline design to support multi-resolution input image and full 8-bit fixed-point datapath to improve hardware resource utilization. Layer fusion technology that merges the convolution, batch normalization and Leaky-ReLU is also developed to avoid transmission of intermediate data between FPGA and external memory. Experimental results show that the final design achieves a peak throughput of 566 GOP/s under the working frequency of 190 MHz. The accelerator can execute YOLOv2 inference computation (
288
×
288
resolution) and tiny YOLOv2 (
416
×
416
resolution) at the speed of 35 and 71 FPS, respectively.</description><subject>Acceleration</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bandwidths</subject><subject>Circuits</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Design</subject><subject>Field programmable gate arrays</subject><subject>Hardware</subject><subject>Image classification</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Original Research Paper</subject><subject>Pattern Recognition</subject><subject>Performance evaluation</subject><subject>Pipeline design</subject><subject>Power</subject><subject>Resource utilization</subject><subject>Signal,Image and Speech Processing</subject><subject>Workloads</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2XzssRS_oNCLHjyFNJnolrZbk63Ff290RT15GGZg3vcd5iHknMElA9BXmTEpawocKECjNd0fkBEzilHDWXP4MwMck5OclwBKKyFH5HpSBQytdz2G6sWlsHcJK-c9rjC5vktVLJXQrWjfrv9s2m5TdbF6ms_mb_yUHEW3ynj23cfk8eb6YXpHZ_Pb--lkRr0wsqeGcRW8qNEZZrCBWjkjvDGSce5rHV3UkSuHsWZomJDaBZBNE9RCLISKCzEmF0PuNnWvO8y9XXa7tCknLW_Ki1pqoYqKDyqfupwTRrtN7dqld8vAfuKyAy5bcNkvXHZfTGIw5SLePGP6jf7H9QHQK2y9</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Xu, Ke</creator><creator>Wang, Xiaoyun</creator><creator>Liu, Xinyang</creator><creator>Cao, Changfeng</creator><creator>Li, Huolin</creator><creator>Peng, Haiyong</creator><creator>Wang, Dong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-0068-8824</orcidid></search><sort><creationdate>20210601</creationdate><title>A dedicated hardware accelerator for real-time acceleration of YOLOv2</title><author>Xu, Ke ; Wang, Xiaoyun ; Liu, Xinyang ; Cao, Changfeng ; Li, Huolin ; Peng, Haiyong ; Wang, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-8126dc34ea818e9046a83c885122c47faf7f26aef41e81357ad0599d6b3b36fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bandwidths</topic><topic>Circuits</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Design</topic><topic>Field programmable gate arrays</topic><topic>Hardware</topic><topic>Image classification</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Original Research Paper</topic><topic>Pattern Recognition</topic><topic>Performance evaluation</topic><topic>Pipeline design</topic><topic>Power</topic><topic>Resource utilization</topic><topic>Signal,Image and Speech Processing</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Wang, Xiaoyun</creatorcontrib><creatorcontrib>Liu, Xinyang</creatorcontrib><creatorcontrib>Cao, Changfeng</creatorcontrib><creatorcontrib>Li, Huolin</creatorcontrib><creatorcontrib>Peng, Haiyong</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Ke</au><au>Wang, Xiaoyun</au><au>Liu, Xinyang</au><au>Cao, Changfeng</au><au>Li, Huolin</au><au>Peng, Haiyong</au><au>Wang, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dedicated hardware accelerator for real-time acceleration of YOLOv2</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>18</volume><issue>3</issue><spage>481</spage><epage>492</epage><pages>481-492</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>In recent years, dedicated hardware accelerators for the acceleration of the convolutional neural network (CNN) have been extensively studied. Although many studies have presented efficient designs on FPGAs for image classification neural network models such as AlexNet and VGG, there are still little implementations for CNN-based object detection applications. This paper presents an OpenCL-based high-throughput FPGA accelerator for the YOLOv2 object detection algorithm on Arria-10 GX1150 FPGA. The proposed hardware architecture adopts a scalable pipeline design to support multi-resolution input image and full 8-bit fixed-point datapath to improve hardware resource utilization. Layer fusion technology that merges the convolution, batch normalization and Leaky-ReLU is also developed to avoid transmission of intermediate data between FPGA and external memory. Experimental results show that the final design achieves a peak throughput of 566 GOP/s under the working frequency of 190 MHz. The accelerator can execute YOLOv2 inference computation (
288
×
288
resolution) and tiny YOLOv2 (
416
×
416
resolution) at the speed of 35 and 71 FPS, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-020-00977-w</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0068-8824</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-8200 |
ispartof | Journal of real-time image processing, 2021-06, Vol.18 (3), p.481-492 |
issn | 1861-8200 1861-8219 |
language | eng |
recordid | cdi_proquest_journals_2918675736 |
source | SpringerLink Journals; ProQuest Central |
subjects | Acceleration Accuracy Algorithms Artificial neural networks Bandwidths Circuits Computer Graphics Computer Science Design Field programmable gate arrays Hardware Image classification Image Processing and Computer Vision Multimedia Information Systems Neural networks Object recognition Original Research Paper Pattern Recognition Performance evaluation Pipeline design Power Resource utilization Signal,Image and Speech Processing Workloads |
title | A dedicated hardware accelerator for real-time acceleration of YOLOv2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dedicated%20hardware%20accelerator%20for%20real-time%20acceleration%20of%20YOLOv2&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Xu,%20Ke&rft.date=2021-06-01&rft.volume=18&rft.issue=3&rft.spage=481&rft.epage=492&rft.pages=481-492&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-020-00977-w&rft_dat=%3Cproquest_cross%3E2918675736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918675736&rft_id=info:pmid/&rfr_iscdi=true |