A computationally efficient tracker with direct appearance-kinematic measure and adaptive Kalman filter
Visual tracking is considered a common procedure in many real-time applications. Such systems are required to track objects under changes in illumination, dynamic viewing angle, image noise and occlusions (to name a few). But to maintain real-time performance despite these challenging conditions, tr...
Gespeichert in:
Veröffentlicht in: | Journal of real-time image processing 2016-02, Vol.11 (2), p.271-285 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 285 |
---|---|
container_issue | 2 |
container_start_page | 271 |
container_title | Journal of real-time image processing |
container_volume | 11 |
creator | Ben-Ari, Rami Ben-Shahar, Ohad |
description | Visual tracking is considered a common procedure in many real-time applications. Such systems are required to track objects under changes in illumination, dynamic viewing angle, image noise and occlusions (to name a few). But to maintain real-time performance despite these challenging conditions, tracking methods should require extremely low computational resources, therefore facing a trade-off between robustness and speed. Emergence of new consumer-level cameras capable of capturing video in 60 fps challenges this tradeoff even further. Unfortunately, state-of-the-art tracking techniques struggle to meet frame rates over 30 VGA-resolution fps with standard desktop power, let alone on typically-weaker mobile devices. In this paper we suggest a significantly cheaper computational method for tracking in colour video clips, that greatly improves tracking performance, in terms of robustness/speed trade-off. The suggested approach employs a novel similarity measure that
explicitly
combines appearance with object kinematics and a new adaptive Kalman filter extends the basic tracking to provide robustness to occlusions and noise. The linear time complexity of this method is reflected in computational efficiency and high processing rate. Comparisons with two recent trackers show superior tracking robustness at more than 5 times faster operation, all using naïve C/C++ implementation and built-in OpenCV functions. |
doi_str_mv | 10.1007/s11554-013-0329-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918673522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918673522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-836f82b341cc9c388750b96b20dd478311ec9701bc6b268fb04ab842e6367bb73</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4-gLuA62oubZIuh8EbCm50HZL0dMxMbyapMm9vh4quXJ3D4f9-OB9Cl5RcU0LkTaS0KPKMUJ4RzsqMHaEFVYJmitHy-Hcn5BSdxbglREjBiwXarLDr22FMJvm-M02zx1DX3nnoEk7BuB0E_OXTO658AJewGQYwwXQOsp3voJ04h1swcQyATVdhU5kh-U_AT6ZpTYdr3yQI5-ikNk2Ei5-5RG93t6_rh-z55f5xvXrOHM_LlCkuasUsz6lzpeNKyYLYUlhGqiqXilMKrpSEWjfdhKotyY1VOQPBhbRW8iW6mnuH0H-MEJPe9mOYHoualZMEyQvGphSdUy70MQao9RB8a8JeU6IPPvXsU08-9cGnPjBsZuKU7TYQ_pr_h74Btpx47w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918673522</pqid></control><display><type>article</type><title>A computationally efficient tracker with direct appearance-kinematic measure and adaptive Kalman filter</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Ben-Ari, Rami ; Ben-Shahar, Ohad</creator><creatorcontrib>Ben-Ari, Rami ; Ben-Shahar, Ohad</creatorcontrib><description>Visual tracking is considered a common procedure in many real-time applications. Such systems are required to track objects under changes in illumination, dynamic viewing angle, image noise and occlusions (to name a few). But to maintain real-time performance despite these challenging conditions, tracking methods should require extremely low computational resources, therefore facing a trade-off between robustness and speed. Emergence of new consumer-level cameras capable of capturing video in 60 fps challenges this tradeoff even further. Unfortunately, state-of-the-art tracking techniques struggle to meet frame rates over 30 VGA-resolution fps with standard desktop power, let alone on typically-weaker mobile devices. In this paper we suggest a significantly cheaper computational method for tracking in colour video clips, that greatly improves tracking performance, in terms of robustness/speed trade-off. The suggested approach employs a novel similarity measure that
explicitly
combines appearance with object kinematics and a new adaptive Kalman filter extends the basic tracking to provide robustness to occlusions and noise. The linear time complexity of this method is reflected in computational efficiency and high processing rate. Comparisons with two recent trackers show superior tracking robustness at more than 5 times faster operation, all using naïve C/C++ implementation and built-in OpenCV functions.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-013-0329-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational efficiency ; Computer Graphics ; Computer Science ; Embedded systems ; Image Processing and Computer Vision ; Kalman filters ; Kinematics ; Multimedia Information Systems ; Optical tracking ; Pattern Recognition ; Real time ; Robustness (mathematics) ; Signal,Image and Speech Processing ; Special Issue Paper ; Tradeoffs ; Velocity</subject><ispartof>Journal of real-time image processing, 2016-02, Vol.11 (2), p.271-285</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-836f82b341cc9c388750b96b20dd478311ec9701bc6b268fb04ab842e6367bb73</citedby><cites>FETCH-LOGICAL-c349t-836f82b341cc9c388750b96b20dd478311ec9701bc6b268fb04ab842e6367bb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11554-013-0329-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918673522?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Ben-Ari, Rami</creatorcontrib><creatorcontrib>Ben-Shahar, Ohad</creatorcontrib><title>A computationally efficient tracker with direct appearance-kinematic measure and adaptive Kalman filter</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>Visual tracking is considered a common procedure in many real-time applications. Such systems are required to track objects under changes in illumination, dynamic viewing angle, image noise and occlusions (to name a few). But to maintain real-time performance despite these challenging conditions, tracking methods should require extremely low computational resources, therefore facing a trade-off between robustness and speed. Emergence of new consumer-level cameras capable of capturing video in 60 fps challenges this tradeoff even further. Unfortunately, state-of-the-art tracking techniques struggle to meet frame rates over 30 VGA-resolution fps with standard desktop power, let alone on typically-weaker mobile devices. In this paper we suggest a significantly cheaper computational method for tracking in colour video clips, that greatly improves tracking performance, in terms of robustness/speed trade-off. The suggested approach employs a novel similarity measure that
explicitly
combines appearance with object kinematics and a new adaptive Kalman filter extends the basic tracking to provide robustness to occlusions and noise. The linear time complexity of this method is reflected in computational efficiency and high processing rate. Comparisons with two recent trackers show superior tracking robustness at more than 5 times faster operation, all using naïve C/C++ implementation and built-in OpenCV functions.</description><subject>Computational efficiency</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Embedded systems</subject><subject>Image Processing and Computer Vision</subject><subject>Kalman filters</subject><subject>Kinematics</subject><subject>Multimedia Information Systems</subject><subject>Optical tracking</subject><subject>Pattern Recognition</subject><subject>Real time</subject><subject>Robustness (mathematics)</subject><subject>Signal,Image and Speech Processing</subject><subject>Special Issue Paper</subject><subject>Tradeoffs</subject><subject>Velocity</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtKxDAUhoMoOI4-gLuA62oubZIuh8EbCm50HZL0dMxMbyapMm9vh4quXJ3D4f9-OB9Cl5RcU0LkTaS0KPKMUJ4RzsqMHaEFVYJmitHy-Hcn5BSdxbglREjBiwXarLDr22FMJvm-M02zx1DX3nnoEk7BuB0E_OXTO658AJewGQYwwXQOsp3voJ04h1swcQyATVdhU5kh-U_AT6ZpTYdr3yQI5-ikNk2Ei5-5RG93t6_rh-z55f5xvXrOHM_LlCkuasUsz6lzpeNKyYLYUlhGqiqXilMKrpSEWjfdhKotyY1VOQPBhbRW8iW6mnuH0H-MEJPe9mOYHoualZMEyQvGphSdUy70MQao9RB8a8JeU6IPPvXsU08-9cGnPjBsZuKU7TYQ_pr_h74Btpx47w</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Ben-Ari, Rami</creator><creator>Ben-Shahar, Ohad</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160201</creationdate><title>A computationally efficient tracker with direct appearance-kinematic measure and adaptive Kalman filter</title><author>Ben-Ari, Rami ; Ben-Shahar, Ohad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-836f82b341cc9c388750b96b20dd478311ec9701bc6b268fb04ab842e6367bb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational efficiency</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Embedded systems</topic><topic>Image Processing and Computer Vision</topic><topic>Kalman filters</topic><topic>Kinematics</topic><topic>Multimedia Information Systems</topic><topic>Optical tracking</topic><topic>Pattern Recognition</topic><topic>Real time</topic><topic>Robustness (mathematics)</topic><topic>Signal,Image and Speech Processing</topic><topic>Special Issue Paper</topic><topic>Tradeoffs</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben-Ari, Rami</creatorcontrib><creatorcontrib>Ben-Shahar, Ohad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben-Ari, Rami</au><au>Ben-Shahar, Ohad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computationally efficient tracker with direct appearance-kinematic measure and adaptive Kalman filter</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>11</volume><issue>2</issue><spage>271</spage><epage>285</epage><pages>271-285</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>Visual tracking is considered a common procedure in many real-time applications. Such systems are required to track objects under changes in illumination, dynamic viewing angle, image noise and occlusions (to name a few). But to maintain real-time performance despite these challenging conditions, tracking methods should require extremely low computational resources, therefore facing a trade-off between robustness and speed. Emergence of new consumer-level cameras capable of capturing video in 60 fps challenges this tradeoff even further. Unfortunately, state-of-the-art tracking techniques struggle to meet frame rates over 30 VGA-resolution fps with standard desktop power, let alone on typically-weaker mobile devices. In this paper we suggest a significantly cheaper computational method for tracking in colour video clips, that greatly improves tracking performance, in terms of robustness/speed trade-off. The suggested approach employs a novel similarity measure that
explicitly
combines appearance with object kinematics and a new adaptive Kalman filter extends the basic tracking to provide robustness to occlusions and noise. The linear time complexity of this method is reflected in computational efficiency and high processing rate. Comparisons with two recent trackers show superior tracking robustness at more than 5 times faster operation, all using naïve C/C++ implementation and built-in OpenCV functions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-013-0329-2</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-8200 |
ispartof | Journal of real-time image processing, 2016-02, Vol.11 (2), p.271-285 |
issn | 1861-8200 1861-8219 |
language | eng |
recordid | cdi_proquest_journals_2918673522 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Computational efficiency Computer Graphics Computer Science Embedded systems Image Processing and Computer Vision Kalman filters Kinematics Multimedia Information Systems Optical tracking Pattern Recognition Real time Robustness (mathematics) Signal,Image and Speech Processing Special Issue Paper Tradeoffs Velocity |
title | A computationally efficient tracker with direct appearance-kinematic measure and adaptive Kalman filter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computationally%20efficient%20tracker%20with%20direct%20appearance-kinematic%20measure%20and%20adaptive%20Kalman%20filter&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Ben-Ari,%20Rami&rft.date=2016-02-01&rft.volume=11&rft.issue=2&rft.spage=271&rft.epage=285&rft.pages=271-285&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-013-0329-2&rft_dat=%3Cproquest_cross%3E2918673522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918673522&rft_id=info:pmid/&rfr_iscdi=true |