A computationally efficient tracker with direct appearance-kinematic measure and adaptive Kalman filter

Visual tracking is considered a common procedure in many real-time applications. Such systems are required to track objects under changes in illumination, dynamic viewing angle, image noise and occlusions (to name a few). But to maintain real-time performance despite these challenging conditions, tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of real-time image processing 2016-02, Vol.11 (2), p.271-285
Hauptverfasser: Ben-Ari, Rami, Ben-Shahar, Ohad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 285
container_issue 2
container_start_page 271
container_title Journal of real-time image processing
container_volume 11
creator Ben-Ari, Rami
Ben-Shahar, Ohad
description Visual tracking is considered a common procedure in many real-time applications. Such systems are required to track objects under changes in illumination, dynamic viewing angle, image noise and occlusions (to name a few). But to maintain real-time performance despite these challenging conditions, tracking methods should require extremely low computational resources, therefore facing a trade-off between robustness and speed. Emergence of new consumer-level cameras capable of capturing video in 60 fps challenges this tradeoff even further. Unfortunately, state-of-the-art tracking techniques struggle to meet frame rates over 30 VGA-resolution fps with standard desktop power, let alone on typically-weaker mobile devices. In this paper we suggest a significantly cheaper computational method for tracking in colour video clips, that greatly improves tracking performance, in terms of robustness/speed trade-off. The suggested approach employs a novel similarity measure that explicitly combines appearance with object kinematics and a new adaptive Kalman filter extends the basic tracking to provide robustness to occlusions and noise. The linear time complexity of this method is reflected in computational efficiency and high processing rate. Comparisons with two recent trackers show superior tracking robustness at more than 5 times faster operation, all using naïve C/C++ implementation and built-in OpenCV functions.
doi_str_mv 10.1007/s11554-013-0329-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918673522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918673522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-836f82b341cc9c388750b96b20dd478311ec9701bc6b268fb04ab842e6367bb73</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4-gLuA62oubZIuh8EbCm50HZL0dMxMbyapMm9vh4quXJ3D4f9-OB9Cl5RcU0LkTaS0KPKMUJ4RzsqMHaEFVYJmitHy-Hcn5BSdxbglREjBiwXarLDr22FMJvm-M02zx1DX3nnoEk7BuB0E_OXTO658AJewGQYwwXQOsp3voJ04h1swcQyATVdhU5kh-U_AT6ZpTYdr3yQI5-ikNk2Ei5-5RG93t6_rh-z55f5xvXrOHM_LlCkuasUsz6lzpeNKyYLYUlhGqiqXilMKrpSEWjfdhKotyY1VOQPBhbRW8iW6mnuH0H-MEJPe9mOYHoualZMEyQvGphSdUy70MQao9RB8a8JeU6IPPvXsU08-9cGnPjBsZuKU7TYQ_pr_h74Btpx47w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918673522</pqid></control><display><type>article</type><title>A computationally efficient tracker with direct appearance-kinematic measure and adaptive Kalman filter</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Ben-Ari, Rami ; Ben-Shahar, Ohad</creator><creatorcontrib>Ben-Ari, Rami ; Ben-Shahar, Ohad</creatorcontrib><description>Visual tracking is considered a common procedure in many real-time applications. Such systems are required to track objects under changes in illumination, dynamic viewing angle, image noise and occlusions (to name a few). But to maintain real-time performance despite these challenging conditions, tracking methods should require extremely low computational resources, therefore facing a trade-off between robustness and speed. Emergence of new consumer-level cameras capable of capturing video in 60 fps challenges this tradeoff even further. Unfortunately, state-of-the-art tracking techniques struggle to meet frame rates over 30 VGA-resolution fps with standard desktop power, let alone on typically-weaker mobile devices. In this paper we suggest a significantly cheaper computational method for tracking in colour video clips, that greatly improves tracking performance, in terms of robustness/speed trade-off. The suggested approach employs a novel similarity measure that explicitly combines appearance with object kinematics and a new adaptive Kalman filter extends the basic tracking to provide robustness to occlusions and noise. The linear time complexity of this method is reflected in computational efficiency and high processing rate. Comparisons with two recent trackers show superior tracking robustness at more than 5 times faster operation, all using naïve C/C++ implementation and built-in OpenCV functions.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-013-0329-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational efficiency ; Computer Graphics ; Computer Science ; Embedded systems ; Image Processing and Computer Vision ; Kalman filters ; Kinematics ; Multimedia Information Systems ; Optical tracking ; Pattern Recognition ; Real time ; Robustness (mathematics) ; Signal,Image and Speech Processing ; Special Issue Paper ; Tradeoffs ; Velocity</subject><ispartof>Journal of real-time image processing, 2016-02, Vol.11 (2), p.271-285</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-836f82b341cc9c388750b96b20dd478311ec9701bc6b268fb04ab842e6367bb73</citedby><cites>FETCH-LOGICAL-c349t-836f82b341cc9c388750b96b20dd478311ec9701bc6b268fb04ab842e6367bb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11554-013-0329-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918673522?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Ben-Ari, Rami</creatorcontrib><creatorcontrib>Ben-Shahar, Ohad</creatorcontrib><title>A computationally efficient tracker with direct appearance-kinematic measure and adaptive Kalman filter</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>Visual tracking is considered a common procedure in many real-time applications. Such systems are required to track objects under changes in illumination, dynamic viewing angle, image noise and occlusions (to name a few). But to maintain real-time performance despite these challenging conditions, tracking methods should require extremely low computational resources, therefore facing a trade-off between robustness and speed. Emergence of new consumer-level cameras capable of capturing video in 60 fps challenges this tradeoff even further. Unfortunately, state-of-the-art tracking techniques struggle to meet frame rates over 30 VGA-resolution fps with standard desktop power, let alone on typically-weaker mobile devices. In this paper we suggest a significantly cheaper computational method for tracking in colour video clips, that greatly improves tracking performance, in terms of robustness/speed trade-off. The suggested approach employs a novel similarity measure that explicitly combines appearance with object kinematics and a new adaptive Kalman filter extends the basic tracking to provide robustness to occlusions and noise. The linear time complexity of this method is reflected in computational efficiency and high processing rate. Comparisons with two recent trackers show superior tracking robustness at more than 5 times faster operation, all using naïve C/C++ implementation and built-in OpenCV functions.</description><subject>Computational efficiency</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Embedded systems</subject><subject>Image Processing and Computer Vision</subject><subject>Kalman filters</subject><subject>Kinematics</subject><subject>Multimedia Information Systems</subject><subject>Optical tracking</subject><subject>Pattern Recognition</subject><subject>Real time</subject><subject>Robustness (mathematics)</subject><subject>Signal,Image and Speech Processing</subject><subject>Special Issue Paper</subject><subject>Tradeoffs</subject><subject>Velocity</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtKxDAUhoMoOI4-gLuA62oubZIuh8EbCm50HZL0dMxMbyapMm9vh4quXJ3D4f9-OB9Cl5RcU0LkTaS0KPKMUJ4RzsqMHaEFVYJmitHy-Hcn5BSdxbglREjBiwXarLDr22FMJvm-M02zx1DX3nnoEk7BuB0E_OXTO658AJewGQYwwXQOsp3voJ04h1swcQyATVdhU5kh-U_AT6ZpTYdr3yQI5-ikNk2Ei5-5RG93t6_rh-z55f5xvXrOHM_LlCkuasUsz6lzpeNKyYLYUlhGqiqXilMKrpSEWjfdhKotyY1VOQPBhbRW8iW6mnuH0H-MEJPe9mOYHoualZMEyQvGphSdUy70MQao9RB8a8JeU6IPPvXsU08-9cGnPjBsZuKU7TYQ_pr_h74Btpx47w</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Ben-Ari, Rami</creator><creator>Ben-Shahar, Ohad</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160201</creationdate><title>A computationally efficient tracker with direct appearance-kinematic measure and adaptive Kalman filter</title><author>Ben-Ari, Rami ; Ben-Shahar, Ohad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-836f82b341cc9c388750b96b20dd478311ec9701bc6b268fb04ab842e6367bb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational efficiency</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Embedded systems</topic><topic>Image Processing and Computer Vision</topic><topic>Kalman filters</topic><topic>Kinematics</topic><topic>Multimedia Information Systems</topic><topic>Optical tracking</topic><topic>Pattern Recognition</topic><topic>Real time</topic><topic>Robustness (mathematics)</topic><topic>Signal,Image and Speech Processing</topic><topic>Special Issue Paper</topic><topic>Tradeoffs</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben-Ari, Rami</creatorcontrib><creatorcontrib>Ben-Shahar, Ohad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben-Ari, Rami</au><au>Ben-Shahar, Ohad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computationally efficient tracker with direct appearance-kinematic measure and adaptive Kalman filter</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>11</volume><issue>2</issue><spage>271</spage><epage>285</epage><pages>271-285</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>Visual tracking is considered a common procedure in many real-time applications. Such systems are required to track objects under changes in illumination, dynamic viewing angle, image noise and occlusions (to name a few). But to maintain real-time performance despite these challenging conditions, tracking methods should require extremely low computational resources, therefore facing a trade-off between robustness and speed. Emergence of new consumer-level cameras capable of capturing video in 60 fps challenges this tradeoff even further. Unfortunately, state-of-the-art tracking techniques struggle to meet frame rates over 30 VGA-resolution fps with standard desktop power, let alone on typically-weaker mobile devices. In this paper we suggest a significantly cheaper computational method for tracking in colour video clips, that greatly improves tracking performance, in terms of robustness/speed trade-off. The suggested approach employs a novel similarity measure that explicitly combines appearance with object kinematics and a new adaptive Kalman filter extends the basic tracking to provide robustness to occlusions and noise. The linear time complexity of this method is reflected in computational efficiency and high processing rate. Comparisons with two recent trackers show superior tracking robustness at more than 5 times faster operation, all using naïve C/C++ implementation and built-in OpenCV functions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-013-0329-2</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1861-8200
ispartof Journal of real-time image processing, 2016-02, Vol.11 (2), p.271-285
issn 1861-8200
1861-8219
language eng
recordid cdi_proquest_journals_2918673522
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Computational efficiency
Computer Graphics
Computer Science
Embedded systems
Image Processing and Computer Vision
Kalman filters
Kinematics
Multimedia Information Systems
Optical tracking
Pattern Recognition
Real time
Robustness (mathematics)
Signal,Image and Speech Processing
Special Issue Paper
Tradeoffs
Velocity
title A computationally efficient tracker with direct appearance-kinematic measure and adaptive Kalman filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computationally%20efficient%20tracker%20with%20direct%20appearance-kinematic%20measure%20and%20adaptive%20Kalman%20filter&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Ben-Ari,%20Rami&rft.date=2016-02-01&rft.volume=11&rft.issue=2&rft.spage=271&rft.epage=285&rft.pages=271-285&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-013-0329-2&rft_dat=%3Cproquest_cross%3E2918673522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918673522&rft_id=info:pmid/&rfr_iscdi=true