Towards 3D Molecule-Text Interpretation in Language Models

Language Models (LMs) have greatly influenced diverse domains. However, their inherent limitation in comprehending 3D molecular structures has considerably constrained their potential in the biomolecular domain. To bridge this gap, we focus on 3D molecule-text interpretation, and propose 3D-MoLM: 3D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Li, Sihang, Liu, Zhiyuan, Luo, Yanchen, Wang, Xiang, He, Xiangnan, Kawaguchi, Kenji, Tat-Seng Chua, Tian, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Li, Sihang
Liu, Zhiyuan
Luo, Yanchen
Wang, Xiang
He, Xiangnan
Kawaguchi, Kenji
Tat-Seng Chua
Tian, Qi
description Language Models (LMs) have greatly influenced diverse domains. However, their inherent limitation in comprehending 3D molecular structures has considerably constrained their potential in the biomolecular domain. To bridge this gap, we focus on 3D molecule-text interpretation, and propose 3D-MoLM: 3D-Molecular Language Modeling. Specifically, 3D-MoLM enables an LM to interpret and analyze 3D molecules by equipping the LM with a 3D molecular encoder. This integration is achieved by a 3D molecule-text projector, bridging the 3D molecular encoder's representation space and the LM's input space. Moreover, to enhance 3D-MoLM's ability of cross-modal molecular understanding and instruction following, we meticulously curated a 3D molecule-centric instruction tuning dataset -- 3D-MoIT. Through 3D molecule-text alignment and 3D molecule-centric instruction tuning, 3D-MoLM establishes an integration of 3D molecular encoder and LM. It significantly surpasses existing baselines on downstream tasks, including molecule-text retrieval, molecule captioning, and more challenging open-text molecular QA tasks, especially focusing on 3D-dependent properties. We release our codes and datasets at https://github.com/lsh0520/3D-MoLM.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2918664392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918664392</sourcerecordid><originalsourceid>FETCH-proquest_journals_29186643923</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOwScA-lJG1tXLyjolr0EeywtIam5oI9vBx_A6R_-b0EyEKJgdQmwInkII-cc5A6qSmRkr9xb-y5QcaR3Z_CRDDKFn0ivNqKfPEYdB2fpYOlN2z7pHmfYoQkbsnxqEzD_dU2255M6XNjk3SthiO3okrfzaqEpailL0YD4T30Bi302fQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918664392</pqid></control><display><type>article</type><title>Towards 3D Molecule-Text Interpretation in Language Models</title><source>Free E- Journals</source><creator>Li, Sihang ; Liu, Zhiyuan ; Luo, Yanchen ; Wang, Xiang ; He, Xiangnan ; Kawaguchi, Kenji ; Tat-Seng Chua ; Tian, Qi</creator><creatorcontrib>Li, Sihang ; Liu, Zhiyuan ; Luo, Yanchen ; Wang, Xiang ; He, Xiangnan ; Kawaguchi, Kenji ; Tat-Seng Chua ; Tian, Qi</creatorcontrib><description>Language Models (LMs) have greatly influenced diverse domains. However, their inherent limitation in comprehending 3D molecular structures has considerably constrained their potential in the biomolecular domain. To bridge this gap, we focus on 3D molecule-text interpretation, and propose 3D-MoLM: 3D-Molecular Language Modeling. Specifically, 3D-MoLM enables an LM to interpret and analyze 3D molecules by equipping the LM with a 3D molecular encoder. This integration is achieved by a 3D molecule-text projector, bridging the 3D molecular encoder's representation space and the LM's input space. Moreover, to enhance 3D-MoLM's ability of cross-modal molecular understanding and instruction following, we meticulously curated a 3D molecule-centric instruction tuning dataset -- 3D-MoIT. Through 3D molecule-text alignment and 3D molecule-centric instruction tuning, 3D-MoLM establishes an integration of 3D molecular encoder and LM. It significantly surpasses existing baselines on downstream tasks, including molecule-text retrieval, molecule captioning, and more challenging open-text molecular QA tasks, especially focusing on 3D-dependent properties. We release our codes and datasets at https://github.com/lsh0520/3D-MoLM.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coders ; Molecular structure ; Three dimensional models ; Tuning</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Li, Sihang</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Luo, Yanchen</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>He, Xiangnan</creatorcontrib><creatorcontrib>Kawaguchi, Kenji</creatorcontrib><creatorcontrib>Tat-Seng Chua</creatorcontrib><creatorcontrib>Tian, Qi</creatorcontrib><title>Towards 3D Molecule-Text Interpretation in Language Models</title><title>arXiv.org</title><description>Language Models (LMs) have greatly influenced diverse domains. However, their inherent limitation in comprehending 3D molecular structures has considerably constrained their potential in the biomolecular domain. To bridge this gap, we focus on 3D molecule-text interpretation, and propose 3D-MoLM: 3D-Molecular Language Modeling. Specifically, 3D-MoLM enables an LM to interpret and analyze 3D molecules by equipping the LM with a 3D molecular encoder. This integration is achieved by a 3D molecule-text projector, bridging the 3D molecular encoder's representation space and the LM's input space. Moreover, to enhance 3D-MoLM's ability of cross-modal molecular understanding and instruction following, we meticulously curated a 3D molecule-centric instruction tuning dataset -- 3D-MoIT. Through 3D molecule-text alignment and 3D molecule-centric instruction tuning, 3D-MoLM establishes an integration of 3D molecular encoder and LM. It significantly surpasses existing baselines on downstream tasks, including molecule-text retrieval, molecule captioning, and more challenging open-text molecular QA tasks, especially focusing on 3D-dependent properties. We release our codes and datasets at https://github.com/lsh0520/3D-MoLM.</description><subject>Coders</subject><subject>Molecular structure</subject><subject>Three dimensional models</subject><subject>Tuning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOwScA-lJG1tXLyjolr0EeywtIam5oI9vBx_A6R_-b0EyEKJgdQmwInkII-cc5A6qSmRkr9xb-y5QcaR3Z_CRDDKFn0ivNqKfPEYdB2fpYOlN2z7pHmfYoQkbsnxqEzD_dU2255M6XNjk3SthiO3okrfzaqEpailL0YD4T30Bi302fQ</recordid><startdate>20240317</startdate><enddate>20240317</enddate><creator>Li, Sihang</creator><creator>Liu, Zhiyuan</creator><creator>Luo, Yanchen</creator><creator>Wang, Xiang</creator><creator>He, Xiangnan</creator><creator>Kawaguchi, Kenji</creator><creator>Tat-Seng Chua</creator><creator>Tian, Qi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240317</creationdate><title>Towards 3D Molecule-Text Interpretation in Language Models</title><author>Li, Sihang ; Liu, Zhiyuan ; Luo, Yanchen ; Wang, Xiang ; He, Xiangnan ; Kawaguchi, Kenji ; Tat-Seng Chua ; Tian, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29186643923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coders</topic><topic>Molecular structure</topic><topic>Three dimensional models</topic><topic>Tuning</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Sihang</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Luo, Yanchen</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>He, Xiangnan</creatorcontrib><creatorcontrib>Kawaguchi, Kenji</creatorcontrib><creatorcontrib>Tat-Seng Chua</creatorcontrib><creatorcontrib>Tian, Qi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Sihang</au><au>Liu, Zhiyuan</au><au>Luo, Yanchen</au><au>Wang, Xiang</au><au>He, Xiangnan</au><au>Kawaguchi, Kenji</au><au>Tat-Seng Chua</au><au>Tian, Qi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards 3D Molecule-Text Interpretation in Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-03-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Language Models (LMs) have greatly influenced diverse domains. However, their inherent limitation in comprehending 3D molecular structures has considerably constrained their potential in the biomolecular domain. To bridge this gap, we focus on 3D molecule-text interpretation, and propose 3D-MoLM: 3D-Molecular Language Modeling. Specifically, 3D-MoLM enables an LM to interpret and analyze 3D molecules by equipping the LM with a 3D molecular encoder. This integration is achieved by a 3D molecule-text projector, bridging the 3D molecular encoder's representation space and the LM's input space. Moreover, to enhance 3D-MoLM's ability of cross-modal molecular understanding and instruction following, we meticulously curated a 3D molecule-centric instruction tuning dataset -- 3D-MoIT. Through 3D molecule-text alignment and 3D molecule-centric instruction tuning, 3D-MoLM establishes an integration of 3D molecular encoder and LM. It significantly surpasses existing baselines on downstream tasks, including molecule-text retrieval, molecule captioning, and more challenging open-text molecular QA tasks, especially focusing on 3D-dependent properties. We release our codes and datasets at https://github.com/lsh0520/3D-MoLM.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2918664392
source Free E- Journals
subjects Coders
Molecular structure
Three dimensional models
Tuning
title Towards 3D Molecule-Text Interpretation in Language Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%203D%20Molecule-Text%20Interpretation%20in%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Li,%20Sihang&rft.date=2024-03-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2918664392%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918664392&rft_id=info:pmid/&rfr_iscdi=true