TriSAM: Tri-Plane SAM for zero-shot cortical blood vessel segmentation in VEM images

While imaging techniques at macro and mesoscales have garnered substantial attention and resources, microscale Volume Electron Microscopy (vEM) imaging, capable of revealing intricate vascular details, has lacked the necessary benchmarking infrastructure. In this paper, we address a significant gap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Wan, Jia, Li, Wanhua, Adhinarta, Jason Ken, Banerjee, Atmadeep, Sjostedt, Evelina, Wu, Jingpeng, Lichtman, Jeff, Pfister, Hanspeter, Donglai Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wan, Jia
Li, Wanhua
Adhinarta, Jason Ken
Banerjee, Atmadeep
Sjostedt, Evelina
Wu, Jingpeng
Lichtman, Jeff
Pfister, Hanspeter
Donglai Wei
description While imaging techniques at macro and mesoscales have garnered substantial attention and resources, microscale Volume Electron Microscopy (vEM) imaging, capable of revealing intricate vascular details, has lacked the necessary benchmarking infrastructure. In this paper, we address a significant gap in this field of neuroimaging by introducing the first-in-class public benchmark, BvEM, designed specifically for cortical blood vessel segmentation in vEM images. Our BvEM benchmark is based on vEM image volumes from three mammals: adult mouse, macaque, and human. We standardized the resolution, addressed imaging variations, and meticulously annotated blood vessels through semi-automatic, manual, and quality control processes, ensuring high-quality 3D segmentation. Furthermore, we developed a zero-shot cortical blood vessel segmentation method named TriSAM, which leverages the powerful segmentation model SAM for 3D segmentation. To extend SAM from 2D to 3D volume segmentation, TriSAM employs a multi-seed tracking framework, leveraging the reliability of certain image planes for tracking while using others to identify potential turning points. This approach effectively achieves long-term 3D blood vessel segmentation without model training or fine-tuning. Experimental results show that TriSAM achieved superior performances on the BvEM benchmark across three species. Our dataset, code, and model are available online at \url{https://jia-wan.github.io/bvem}.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2918654403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918654403</sourcerecordid><originalsourceid>FETCH-proquest_journals_29186544033</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgKNo_LHgupEmr1ZuI4qUgWLyWqKumxKxmowdfbw8-wNMwzPTEUGmdpWWu1EAkzK2UUk1nqij0UNR1sPtltYCO6c4Zj9ApXCjABwOlfKMIJwrRnoyDoyM6wxuZ0QHj9Y4-mmjJg_VwWFdg7-aKPBb9i3GMyY8jMdms69U2fQR6vpBj09Ir-C41ap6V0yLPpdb_XV-1RT8s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918654403</pqid></control><display><type>article</type><title>TriSAM: Tri-Plane SAM for zero-shot cortical blood vessel segmentation in VEM images</title><source>Free E- Journals</source><creator>Wan, Jia ; Li, Wanhua ; Adhinarta, Jason Ken ; Banerjee, Atmadeep ; Sjostedt, Evelina ; Wu, Jingpeng ; Lichtman, Jeff ; Pfister, Hanspeter ; Donglai Wei</creator><creatorcontrib>Wan, Jia ; Li, Wanhua ; Adhinarta, Jason Ken ; Banerjee, Atmadeep ; Sjostedt, Evelina ; Wu, Jingpeng ; Lichtman, Jeff ; Pfister, Hanspeter ; Donglai Wei</creatorcontrib><description>While imaging techniques at macro and mesoscales have garnered substantial attention and resources, microscale Volume Electron Microscopy (vEM) imaging, capable of revealing intricate vascular details, has lacked the necessary benchmarking infrastructure. In this paper, we address a significant gap in this field of neuroimaging by introducing the first-in-class public benchmark, BvEM, designed specifically for cortical blood vessel segmentation in vEM images. Our BvEM benchmark is based on vEM image volumes from three mammals: adult mouse, macaque, and human. We standardized the resolution, addressed imaging variations, and meticulously annotated blood vessels through semi-automatic, manual, and quality control processes, ensuring high-quality 3D segmentation. Furthermore, we developed a zero-shot cortical blood vessel segmentation method named TriSAM, which leverages the powerful segmentation model SAM for 3D segmentation. To extend SAM from 2D to 3D volume segmentation, TriSAM employs a multi-seed tracking framework, leveraging the reliability of certain image planes for tracking while using others to identify potential turning points. This approach effectively achieves long-term 3D blood vessel segmentation without model training or fine-tuning. Experimental results show that TriSAM achieved superior performances on the BvEM benchmark across three species. Our dataset, code, and model are available online at \url{https://jia-wan.github.io/bvem}.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Benchmarks ; Blood vessels ; Brain ; Image segmentation ; Imaging techniques ; Medical imaging ; Quality control ; Three dimensional models ; Tracking</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wan, Jia</creatorcontrib><creatorcontrib>Li, Wanhua</creatorcontrib><creatorcontrib>Adhinarta, Jason Ken</creatorcontrib><creatorcontrib>Banerjee, Atmadeep</creatorcontrib><creatorcontrib>Sjostedt, Evelina</creatorcontrib><creatorcontrib>Wu, Jingpeng</creatorcontrib><creatorcontrib>Lichtman, Jeff</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><creatorcontrib>Donglai Wei</creatorcontrib><title>TriSAM: Tri-Plane SAM for zero-shot cortical blood vessel segmentation in VEM images</title><title>arXiv.org</title><description>While imaging techniques at macro and mesoscales have garnered substantial attention and resources, microscale Volume Electron Microscopy (vEM) imaging, capable of revealing intricate vascular details, has lacked the necessary benchmarking infrastructure. In this paper, we address a significant gap in this field of neuroimaging by introducing the first-in-class public benchmark, BvEM, designed specifically for cortical blood vessel segmentation in vEM images. Our BvEM benchmark is based on vEM image volumes from three mammals: adult mouse, macaque, and human. We standardized the resolution, addressed imaging variations, and meticulously annotated blood vessels through semi-automatic, manual, and quality control processes, ensuring high-quality 3D segmentation. Furthermore, we developed a zero-shot cortical blood vessel segmentation method named TriSAM, which leverages the powerful segmentation model SAM for 3D segmentation. To extend SAM from 2D to 3D volume segmentation, TriSAM employs a multi-seed tracking framework, leveraging the reliability of certain image planes for tracking while using others to identify potential turning points. This approach effectively achieves long-term 3D blood vessel segmentation without model training or fine-tuning. Experimental results show that TriSAM achieved superior performances on the BvEM benchmark across three species. Our dataset, code, and model are available online at \url{https://jia-wan.github.io/bvem}.</description><subject>Benchmarks</subject><subject>Blood vessels</subject><subject>Brain</subject><subject>Image segmentation</subject><subject>Imaging techniques</subject><subject>Medical imaging</subject><subject>Quality control</subject><subject>Three dimensional models</subject><subject>Tracking</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikEKwjAQAIMgKNo_LHgupEmr1ZuI4qUgWLyWqKumxKxmowdfbw8-wNMwzPTEUGmdpWWu1EAkzK2UUk1nqij0UNR1sPtltYCO6c4Zj9ApXCjABwOlfKMIJwrRnoyDoyM6wxuZ0QHj9Y4-mmjJg_VwWFdg7-aKPBb9i3GMyY8jMdms69U2fQR6vpBj09Ir-C41ap6V0yLPpdb_XV-1RT8s</recordid><startdate>20240815</startdate><enddate>20240815</enddate><creator>Wan, Jia</creator><creator>Li, Wanhua</creator><creator>Adhinarta, Jason Ken</creator><creator>Banerjee, Atmadeep</creator><creator>Sjostedt, Evelina</creator><creator>Wu, Jingpeng</creator><creator>Lichtman, Jeff</creator><creator>Pfister, Hanspeter</creator><creator>Donglai Wei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240815</creationdate><title>TriSAM: Tri-Plane SAM for zero-shot cortical blood vessel segmentation in VEM images</title><author>Wan, Jia ; Li, Wanhua ; Adhinarta, Jason Ken ; Banerjee, Atmadeep ; Sjostedt, Evelina ; Wu, Jingpeng ; Lichtman, Jeff ; Pfister, Hanspeter ; Donglai Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29186544033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmarks</topic><topic>Blood vessels</topic><topic>Brain</topic><topic>Image segmentation</topic><topic>Imaging techniques</topic><topic>Medical imaging</topic><topic>Quality control</topic><topic>Three dimensional models</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Wan, Jia</creatorcontrib><creatorcontrib>Li, Wanhua</creatorcontrib><creatorcontrib>Adhinarta, Jason Ken</creatorcontrib><creatorcontrib>Banerjee, Atmadeep</creatorcontrib><creatorcontrib>Sjostedt, Evelina</creatorcontrib><creatorcontrib>Wu, Jingpeng</creatorcontrib><creatorcontrib>Lichtman, Jeff</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><creatorcontrib>Donglai Wei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Jia</au><au>Li, Wanhua</au><au>Adhinarta, Jason Ken</au><au>Banerjee, Atmadeep</au><au>Sjostedt, Evelina</au><au>Wu, Jingpeng</au><au>Lichtman, Jeff</au><au>Pfister, Hanspeter</au><au>Donglai Wei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>TriSAM: Tri-Plane SAM for zero-shot cortical blood vessel segmentation in VEM images</atitle><jtitle>arXiv.org</jtitle><date>2024-08-15</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>While imaging techniques at macro and mesoscales have garnered substantial attention and resources, microscale Volume Electron Microscopy (vEM) imaging, capable of revealing intricate vascular details, has lacked the necessary benchmarking infrastructure. In this paper, we address a significant gap in this field of neuroimaging by introducing the first-in-class public benchmark, BvEM, designed specifically for cortical blood vessel segmentation in vEM images. Our BvEM benchmark is based on vEM image volumes from three mammals: adult mouse, macaque, and human. We standardized the resolution, addressed imaging variations, and meticulously annotated blood vessels through semi-automatic, manual, and quality control processes, ensuring high-quality 3D segmentation. Furthermore, we developed a zero-shot cortical blood vessel segmentation method named TriSAM, which leverages the powerful segmentation model SAM for 3D segmentation. To extend SAM from 2D to 3D volume segmentation, TriSAM employs a multi-seed tracking framework, leveraging the reliability of certain image planes for tracking while using others to identify potential turning points. This approach effectively achieves long-term 3D blood vessel segmentation without model training or fine-tuning. Experimental results show that TriSAM achieved superior performances on the BvEM benchmark across three species. Our dataset, code, and model are available online at \url{https://jia-wan.github.io/bvem}.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2918654403
source Free E- Journals
subjects Benchmarks
Blood vessels
Brain
Image segmentation
Imaging techniques
Medical imaging
Quality control
Three dimensional models
Tracking
title TriSAM: Tri-Plane SAM for zero-shot cortical blood vessel segmentation in VEM images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=TriSAM:%20Tri-Plane%20SAM%20for%20zero-shot%20cortical%20blood%20vessel%20segmentation%20in%20VEM%20images&rft.jtitle=arXiv.org&rft.au=Wan,%20Jia&rft.date=2024-08-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2918654403%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918654403&rft_id=info:pmid/&rfr_iscdi=true