TriSAM: Tri-Plane SAM for zero-shot cortical blood vessel segmentation in VEM images
While imaging techniques at macro and mesoscales have garnered substantial attention and resources, microscale Volume Electron Microscopy (vEM) imaging, capable of revealing intricate vascular details, has lacked the necessary benchmarking infrastructure. In this paper, we address a significant gap...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wan, Jia Li, Wanhua Adhinarta, Jason Ken Banerjee, Atmadeep Sjostedt, Evelina Wu, Jingpeng Lichtman, Jeff Pfister, Hanspeter Donglai Wei |
description | While imaging techniques at macro and mesoscales have garnered substantial attention and resources, microscale Volume Electron Microscopy (vEM) imaging, capable of revealing intricate vascular details, has lacked the necessary benchmarking infrastructure. In this paper, we address a significant gap in this field of neuroimaging by introducing the first-in-class public benchmark, BvEM, designed specifically for cortical blood vessel segmentation in vEM images. Our BvEM benchmark is based on vEM image volumes from three mammals: adult mouse, macaque, and human. We standardized the resolution, addressed imaging variations, and meticulously annotated blood vessels through semi-automatic, manual, and quality control processes, ensuring high-quality 3D segmentation. Furthermore, we developed a zero-shot cortical blood vessel segmentation method named TriSAM, which leverages the powerful segmentation model SAM for 3D segmentation. To extend SAM from 2D to 3D volume segmentation, TriSAM employs a multi-seed tracking framework, leveraging the reliability of certain image planes for tracking while using others to identify potential turning points. This approach effectively achieves long-term 3D blood vessel segmentation without model training or fine-tuning. Experimental results show that TriSAM achieved superior performances on the BvEM benchmark across three species. Our dataset, code, and model are available online at \url{https://jia-wan.github.io/bvem}. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2918654403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918654403</sourcerecordid><originalsourceid>FETCH-proquest_journals_29186544033</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgKNo_LHgupEmr1ZuI4qUgWLyWqKumxKxmowdfbw8-wNMwzPTEUGmdpWWu1EAkzK2UUk1nqij0UNR1sPtltYCO6c4Zj9ApXCjABwOlfKMIJwrRnoyDoyM6wxuZ0QHj9Y4-mmjJg_VwWFdg7-aKPBb9i3GMyY8jMdms69U2fQR6vpBj09Ir-C41ap6V0yLPpdb_XV-1RT8s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918654403</pqid></control><display><type>article</type><title>TriSAM: Tri-Plane SAM for zero-shot cortical blood vessel segmentation in VEM images</title><source>Free E- Journals</source><creator>Wan, Jia ; Li, Wanhua ; Adhinarta, Jason Ken ; Banerjee, Atmadeep ; Sjostedt, Evelina ; Wu, Jingpeng ; Lichtman, Jeff ; Pfister, Hanspeter ; Donglai Wei</creator><creatorcontrib>Wan, Jia ; Li, Wanhua ; Adhinarta, Jason Ken ; Banerjee, Atmadeep ; Sjostedt, Evelina ; Wu, Jingpeng ; Lichtman, Jeff ; Pfister, Hanspeter ; Donglai Wei</creatorcontrib><description>While imaging techniques at macro and mesoscales have garnered substantial attention and resources, microscale Volume Electron Microscopy (vEM) imaging, capable of revealing intricate vascular details, has lacked the necessary benchmarking infrastructure. In this paper, we address a significant gap in this field of neuroimaging by introducing the first-in-class public benchmark, BvEM, designed specifically for cortical blood vessel segmentation in vEM images. Our BvEM benchmark is based on vEM image volumes from three mammals: adult mouse, macaque, and human. We standardized the resolution, addressed imaging variations, and meticulously annotated blood vessels through semi-automatic, manual, and quality control processes, ensuring high-quality 3D segmentation. Furthermore, we developed a zero-shot cortical blood vessel segmentation method named TriSAM, which leverages the powerful segmentation model SAM for 3D segmentation. To extend SAM from 2D to 3D volume segmentation, TriSAM employs a multi-seed tracking framework, leveraging the reliability of certain image planes for tracking while using others to identify potential turning points. This approach effectively achieves long-term 3D blood vessel segmentation without model training or fine-tuning. Experimental results show that TriSAM achieved superior performances on the BvEM benchmark across three species. Our dataset, code, and model are available online at \url{https://jia-wan.github.io/bvem}.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Benchmarks ; Blood vessels ; Brain ; Image segmentation ; Imaging techniques ; Medical imaging ; Quality control ; Three dimensional models ; Tracking</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wan, Jia</creatorcontrib><creatorcontrib>Li, Wanhua</creatorcontrib><creatorcontrib>Adhinarta, Jason Ken</creatorcontrib><creatorcontrib>Banerjee, Atmadeep</creatorcontrib><creatorcontrib>Sjostedt, Evelina</creatorcontrib><creatorcontrib>Wu, Jingpeng</creatorcontrib><creatorcontrib>Lichtman, Jeff</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><creatorcontrib>Donglai Wei</creatorcontrib><title>TriSAM: Tri-Plane SAM for zero-shot cortical blood vessel segmentation in VEM images</title><title>arXiv.org</title><description>While imaging techniques at macro and mesoscales have garnered substantial attention and resources, microscale Volume Electron Microscopy (vEM) imaging, capable of revealing intricate vascular details, has lacked the necessary benchmarking infrastructure. In this paper, we address a significant gap in this field of neuroimaging by introducing the first-in-class public benchmark, BvEM, designed specifically for cortical blood vessel segmentation in vEM images. Our BvEM benchmark is based on vEM image volumes from three mammals: adult mouse, macaque, and human. We standardized the resolution, addressed imaging variations, and meticulously annotated blood vessels through semi-automatic, manual, and quality control processes, ensuring high-quality 3D segmentation. Furthermore, we developed a zero-shot cortical blood vessel segmentation method named TriSAM, which leverages the powerful segmentation model SAM for 3D segmentation. To extend SAM from 2D to 3D volume segmentation, TriSAM employs a multi-seed tracking framework, leveraging the reliability of certain image planes for tracking while using others to identify potential turning points. This approach effectively achieves long-term 3D blood vessel segmentation without model training or fine-tuning. Experimental results show that TriSAM achieved superior performances on the BvEM benchmark across three species. Our dataset, code, and model are available online at \url{https://jia-wan.github.io/bvem}.</description><subject>Benchmarks</subject><subject>Blood vessels</subject><subject>Brain</subject><subject>Image segmentation</subject><subject>Imaging techniques</subject><subject>Medical imaging</subject><subject>Quality control</subject><subject>Three dimensional models</subject><subject>Tracking</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikEKwjAQAIMgKNo_LHgupEmr1ZuI4qUgWLyWqKumxKxmowdfbw8-wNMwzPTEUGmdpWWu1EAkzK2UUk1nqij0UNR1sPtltYCO6c4Zj9ApXCjABwOlfKMIJwrRnoyDoyM6wxuZ0QHj9Y4-mmjJg_VwWFdg7-aKPBb9i3GMyY8jMdms69U2fQR6vpBj09Ir-C41ap6V0yLPpdb_XV-1RT8s</recordid><startdate>20240815</startdate><enddate>20240815</enddate><creator>Wan, Jia</creator><creator>Li, Wanhua</creator><creator>Adhinarta, Jason Ken</creator><creator>Banerjee, Atmadeep</creator><creator>Sjostedt, Evelina</creator><creator>Wu, Jingpeng</creator><creator>Lichtman, Jeff</creator><creator>Pfister, Hanspeter</creator><creator>Donglai Wei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240815</creationdate><title>TriSAM: Tri-Plane SAM for zero-shot cortical blood vessel segmentation in VEM images</title><author>Wan, Jia ; Li, Wanhua ; Adhinarta, Jason Ken ; Banerjee, Atmadeep ; Sjostedt, Evelina ; Wu, Jingpeng ; Lichtman, Jeff ; Pfister, Hanspeter ; Donglai Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29186544033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmarks</topic><topic>Blood vessels</topic><topic>Brain</topic><topic>Image segmentation</topic><topic>Imaging techniques</topic><topic>Medical imaging</topic><topic>Quality control</topic><topic>Three dimensional models</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Wan, Jia</creatorcontrib><creatorcontrib>Li, Wanhua</creatorcontrib><creatorcontrib>Adhinarta, Jason Ken</creatorcontrib><creatorcontrib>Banerjee, Atmadeep</creatorcontrib><creatorcontrib>Sjostedt, Evelina</creatorcontrib><creatorcontrib>Wu, Jingpeng</creatorcontrib><creatorcontrib>Lichtman, Jeff</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><creatorcontrib>Donglai Wei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Jia</au><au>Li, Wanhua</au><au>Adhinarta, Jason Ken</au><au>Banerjee, Atmadeep</au><au>Sjostedt, Evelina</au><au>Wu, Jingpeng</au><au>Lichtman, Jeff</au><au>Pfister, Hanspeter</au><au>Donglai Wei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>TriSAM: Tri-Plane SAM for zero-shot cortical blood vessel segmentation in VEM images</atitle><jtitle>arXiv.org</jtitle><date>2024-08-15</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>While imaging techniques at macro and mesoscales have garnered substantial attention and resources, microscale Volume Electron Microscopy (vEM) imaging, capable of revealing intricate vascular details, has lacked the necessary benchmarking infrastructure. In this paper, we address a significant gap in this field of neuroimaging by introducing the first-in-class public benchmark, BvEM, designed specifically for cortical blood vessel segmentation in vEM images. Our BvEM benchmark is based on vEM image volumes from three mammals: adult mouse, macaque, and human. We standardized the resolution, addressed imaging variations, and meticulously annotated blood vessels through semi-automatic, manual, and quality control processes, ensuring high-quality 3D segmentation. Furthermore, we developed a zero-shot cortical blood vessel segmentation method named TriSAM, which leverages the powerful segmentation model SAM for 3D segmentation. To extend SAM from 2D to 3D volume segmentation, TriSAM employs a multi-seed tracking framework, leveraging the reliability of certain image planes for tracking while using others to identify potential turning points. This approach effectively achieves long-term 3D blood vessel segmentation without model training or fine-tuning. Experimental results show that TriSAM achieved superior performances on the BvEM benchmark across three species. Our dataset, code, and model are available online at \url{https://jia-wan.github.io/bvem}.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2918654403 |
source | Free E- Journals |
subjects | Benchmarks Blood vessels Brain Image segmentation Imaging techniques Medical imaging Quality control Three dimensional models Tracking |
title | TriSAM: Tri-Plane SAM for zero-shot cortical blood vessel segmentation in VEM images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=TriSAM:%20Tri-Plane%20SAM%20for%20zero-shot%20cortical%20blood%20vessel%20segmentation%20in%20VEM%20images&rft.jtitle=arXiv.org&rft.au=Wan,%20Jia&rft.date=2024-08-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2918654403%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918654403&rft_id=info:pmid/&rfr_iscdi=true |