Efficient quantum arithmetic operation circuits for quantum image processing

Efficient quantum circuits for arithmetic operations are vital for quantum algorithms. A fault-tolerant circuit is required for a robust quantum computing in the presence of noise. Quantum circuits based on Clifford+T gates are easily rendered fault-tolerant. Therefore, reducing the T-depth and T-Co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2020-08, Vol.63 (8), p.280311, Article 280311
Hauptverfasser: Li, Hai-Sheng, Fan, Ping, Xia, Haiying, Peng, Huiling, Long, Gui-Lu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 280311
container_title Science China. Physics, mechanics & astronomy
container_volume 63
creator Li, Hai-Sheng
Fan, Ping
Xia, Haiying
Peng, Huiling
Long, Gui-Lu
description Efficient quantum circuits for arithmetic operations are vital for quantum algorithms. A fault-tolerant circuit is required for a robust quantum computing in the presence of noise. Quantum circuits based on Clifford+T gates are easily rendered fault-tolerant. Therefore, reducing the T-depth and T-Count without increasing the qubit number represents vital optimization goals for quantum circuits. In this study, we propose the fault-tolerant implementations for TR and Peres gates with optimized T-depth and T-Count. Next, we design fault-tolerant circuits for quantum arithmetic operations using the TR and Peres gates. Then, we implement cyclic and complete translations of quantum images using quantum arithmetic operations, and the scalar matrix multiplication. Comparative analysis and simulation results reveal that the proposed arithmetic and image operations are efficient. For instance, cyclic translations of a quantum image produce 50% T-depth reduction relative to the previous best-known cyclic translation.
doi_str_mv 10.1007/s11433-020-1582-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918650275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A726942483</galeid><sourcerecordid>A726942483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-227afa2353a95e683269ba0724f74c8fe2c00f57055728a1c4e2b8df61dce1eb3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGp_gLsB11PznGSWpdQHFNzoOqTpzZjSmbRJZuG_N2VEV-YuEi7nuyf3IHRP8JJgLB8TIZyxGlNcE6Fora7QjKimrUlL5XV5N5LXknF1ixYpHXA5rMVc8hnabpzz1sOQq_Nohjz2lYk-f_aQva3CCaLJPgyV9dGOPqfKhfir9L3poDrFYCElP3R36MaZY4LFzz1HH0-b9_VLvX17fl2vtrXllOSaUmmcoUww0wpoFKNNuzNYUu4kt8oBtRg7IbEQkipDLAe6U3vXkL0FAjs2Rw_T3GJ9HiFlfQhjHIqlpm1ZXGAqRVEtJ1VnjqD94EKOxpbaQ-9tGMD50l_J4s4pV6wAZAJsDClFcPoUy4rxSxOsL0HrKWhdgtaXoLUqDJ2YVLRDB_HvK_9D33xngEo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918650275</pqid></control><display><type>article</type><title>Efficient quantum arithmetic operation circuits for quantum image processing</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Hai-Sheng ; Fan, Ping ; Xia, Haiying ; Peng, Huiling ; Long, Gui-Lu</creator><creatorcontrib>Li, Hai-Sheng ; Fan, Ping ; Xia, Haiying ; Peng, Huiling ; Long, Gui-Lu</creatorcontrib><description>Efficient quantum circuits for arithmetic operations are vital for quantum algorithms. A fault-tolerant circuit is required for a robust quantum computing in the presence of noise. Quantum circuits based on Clifford+T gates are easily rendered fault-tolerant. Therefore, reducing the T-depth and T-Count without increasing the qubit number represents vital optimization goals for quantum circuits. In this study, we propose the fault-tolerant implementations for TR and Peres gates with optimized T-depth and T-Count. Next, we design fault-tolerant circuits for quantum arithmetic operations using the TR and Peres gates. Then, we implement cyclic and complete translations of quantum images using quantum arithmetic operations, and the scalar matrix multiplication. Comparative analysis and simulation results reveal that the proposed arithmetic and image operations are efficient. For instance, cyclic translations of a quantum image produce 50% T-depth reduction relative to the previous best-known cyclic translation.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-020-1582-8</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Algorithms ; Arithmetic ; Astronomy ; Circuit design ; Circuits ; Classical and Continuum Physics ; Communication ; Design ; Equipment and supplies ; Fault tolerance ; Fourier transforms ; Gates ; Gates (circuits) ; Image processing ; Integrated circuits ; Multiplication ; Observations and Techniques ; Physics ; Physics and Astronomy ; Quantum computing ; Qubits (quantum computing) ; Semiconductor chips ; Translations</subject><ispartof>Science China. Physics, mechanics &amp; astronomy, 2020-08, Vol.63 (8), p.280311, Article 280311</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-227afa2353a95e683269ba0724f74c8fe2c00f57055728a1c4e2b8df61dce1eb3</citedby><cites>FETCH-LOGICAL-c421t-227afa2353a95e683269ba0724f74c8fe2c00f57055728a1c4e2b8df61dce1eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11433-020-1582-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11433-020-1582-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Hai-Sheng</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Xia, Haiying</creatorcontrib><creatorcontrib>Peng, Huiling</creatorcontrib><creatorcontrib>Long, Gui-Lu</creatorcontrib><title>Efficient quantum arithmetic operation circuits for quantum image processing</title><title>Science China. Physics, mechanics &amp; astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><description>Efficient quantum circuits for arithmetic operations are vital for quantum algorithms. A fault-tolerant circuit is required for a robust quantum computing in the presence of noise. Quantum circuits based on Clifford+T gates are easily rendered fault-tolerant. Therefore, reducing the T-depth and T-Count without increasing the qubit number represents vital optimization goals for quantum circuits. In this study, we propose the fault-tolerant implementations for TR and Peres gates with optimized T-depth and T-Count. Next, we design fault-tolerant circuits for quantum arithmetic operations using the TR and Peres gates. Then, we implement cyclic and complete translations of quantum images using quantum arithmetic operations, and the scalar matrix multiplication. Comparative analysis and simulation results reveal that the proposed arithmetic and image operations are efficient. For instance, cyclic translations of a quantum image produce 50% T-depth reduction relative to the previous best-known cyclic translation.</description><subject>Algorithms</subject><subject>Arithmetic</subject><subject>Astronomy</subject><subject>Circuit design</subject><subject>Circuits</subject><subject>Classical and Continuum Physics</subject><subject>Communication</subject><subject>Design</subject><subject>Equipment and supplies</subject><subject>Fault tolerance</subject><subject>Fourier transforms</subject><subject>Gates</subject><subject>Gates (circuits)</subject><subject>Image processing</subject><subject>Integrated circuits</subject><subject>Multiplication</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Semiconductor chips</subject><subject>Translations</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLAzEUhYMoWGp_gLsB11PznGSWpdQHFNzoOqTpzZjSmbRJZuG_N2VEV-YuEi7nuyf3IHRP8JJgLB8TIZyxGlNcE6Fora7QjKimrUlL5XV5N5LXknF1ixYpHXA5rMVc8hnabpzz1sOQq_Nohjz2lYk-f_aQva3CCaLJPgyV9dGOPqfKhfir9L3poDrFYCElP3R36MaZY4LFzz1HH0-b9_VLvX17fl2vtrXllOSaUmmcoUww0wpoFKNNuzNYUu4kt8oBtRg7IbEQkipDLAe6U3vXkL0FAjs2Rw_T3GJ9HiFlfQhjHIqlpm1ZXGAqRVEtJ1VnjqD94EKOxpbaQ-9tGMD50l_J4s4pV6wAZAJsDClFcPoUy4rxSxOsL0HrKWhdgtaXoLUqDJ2YVLRDB_HvK_9D33xngEo</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Li, Hai-Sheng</creator><creator>Fan, Ping</creator><creator>Xia, Haiying</creator><creator>Peng, Huiling</creator><creator>Long, Gui-Lu</creator><general>Science China Press</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20200801</creationdate><title>Efficient quantum arithmetic operation circuits for quantum image processing</title><author>Li, Hai-Sheng ; Fan, Ping ; Xia, Haiying ; Peng, Huiling ; Long, Gui-Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-227afa2353a95e683269ba0724f74c8fe2c00f57055728a1c4e2b8df61dce1eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Arithmetic</topic><topic>Astronomy</topic><topic>Circuit design</topic><topic>Circuits</topic><topic>Classical and Continuum Physics</topic><topic>Communication</topic><topic>Design</topic><topic>Equipment and supplies</topic><topic>Fault tolerance</topic><topic>Fourier transforms</topic><topic>Gates</topic><topic>Gates (circuits)</topic><topic>Image processing</topic><topic>Integrated circuits</topic><topic>Multiplication</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Semiconductor chips</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hai-Sheng</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Xia, Haiying</creatorcontrib><creatorcontrib>Peng, Huiling</creatorcontrib><creatorcontrib>Long, Gui-Lu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hai-Sheng</au><au>Fan, Ping</au><au>Xia, Haiying</au><au>Peng, Huiling</au><au>Long, Gui-Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient quantum arithmetic operation circuits for quantum image processing</atitle><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>63</volume><issue>8</issue><spage>280311</spage><pages>280311-</pages><artnum>280311</artnum><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>Efficient quantum circuits for arithmetic operations are vital for quantum algorithms. A fault-tolerant circuit is required for a robust quantum computing in the presence of noise. Quantum circuits based on Clifford+T gates are easily rendered fault-tolerant. Therefore, reducing the T-depth and T-Count without increasing the qubit number represents vital optimization goals for quantum circuits. In this study, we propose the fault-tolerant implementations for TR and Peres gates with optimized T-depth and T-Count. Next, we design fault-tolerant circuits for quantum arithmetic operations using the TR and Peres gates. Then, we implement cyclic and complete translations of quantum images using quantum arithmetic operations, and the scalar matrix multiplication. Comparative analysis and simulation results reveal that the proposed arithmetic and image operations are efficient. For instance, cyclic translations of a quantum image produce 50% T-depth reduction relative to the previous best-known cyclic translation.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11433-020-1582-8</doi></addata></record>
fulltext fulltext
identifier ISSN: 1674-7348
ispartof Science China. Physics, mechanics & astronomy, 2020-08, Vol.63 (8), p.280311, Article 280311
issn 1674-7348
1869-1927
language eng
recordid cdi_proquest_journals_2918650275
source SpringerNature Journals; Alma/SFX Local Collection
subjects Algorithms
Arithmetic
Astronomy
Circuit design
Circuits
Classical and Continuum Physics
Communication
Design
Equipment and supplies
Fault tolerance
Fourier transforms
Gates
Gates (circuits)
Image processing
Integrated circuits
Multiplication
Observations and Techniques
Physics
Physics and Astronomy
Quantum computing
Qubits (quantum computing)
Semiconductor chips
Translations
title Efficient quantum arithmetic operation circuits for quantum image processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20quantum%20arithmetic%20operation%20circuits%20for%20quantum%20image%20processing&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Li,%20Hai-Sheng&rft.date=2020-08-01&rft.volume=63&rft.issue=8&rft.spage=280311&rft.pages=280311-&rft.artnum=280311&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-020-1582-8&rft_dat=%3Cgale_proqu%3EA726942483%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918650275&rft_id=info:pmid/&rft_galeid=A726942483&rfr_iscdi=true