Efficient quantum arithmetic operation circuits for quantum image processing
Efficient quantum circuits for arithmetic operations are vital for quantum algorithms. A fault-tolerant circuit is required for a robust quantum computing in the presence of noise. Quantum circuits based on Clifford+T gates are easily rendered fault-tolerant. Therefore, reducing the T-depth and T-Co...
Gespeichert in:
Veröffentlicht in: | Science China. Physics, mechanics & astronomy mechanics & astronomy, 2020-08, Vol.63 (8), p.280311, Article 280311 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 280311 |
container_title | Science China. Physics, mechanics & astronomy |
container_volume | 63 |
creator | Li, Hai-Sheng Fan, Ping Xia, Haiying Peng, Huiling Long, Gui-Lu |
description | Efficient quantum circuits for arithmetic operations are vital for quantum algorithms. A fault-tolerant circuit is required for a robust quantum computing in the presence of noise. Quantum circuits based on Clifford+T gates are easily rendered fault-tolerant. Therefore, reducing the T-depth and T-Count without increasing the qubit number represents vital optimization goals for quantum circuits. In this study, we propose the fault-tolerant implementations for TR and Peres gates with optimized T-depth and T-Count. Next, we design fault-tolerant circuits for quantum arithmetic operations using the TR and Peres gates. Then, we implement cyclic and complete translations of quantum images using quantum arithmetic operations, and the scalar matrix multiplication. Comparative analysis and simulation results reveal that the proposed arithmetic and image operations are efficient. For instance, cyclic translations of a quantum image produce 50% T-depth reduction relative to the previous best-known cyclic translation. |
doi_str_mv | 10.1007/s11433-020-1582-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918650275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A726942483</galeid><sourcerecordid>A726942483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-227afa2353a95e683269ba0724f74c8fe2c00f57055728a1c4e2b8df61dce1eb3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGp_gLsB11PznGSWpdQHFNzoOqTpzZjSmbRJZuG_N2VEV-YuEi7nuyf3IHRP8JJgLB8TIZyxGlNcE6Fora7QjKimrUlL5XV5N5LXknF1ixYpHXA5rMVc8hnabpzz1sOQq_Nohjz2lYk-f_aQva3CCaLJPgyV9dGOPqfKhfir9L3poDrFYCElP3R36MaZY4LFzz1HH0-b9_VLvX17fl2vtrXllOSaUmmcoUww0wpoFKNNuzNYUu4kt8oBtRg7IbEQkipDLAe6U3vXkL0FAjs2Rw_T3GJ9HiFlfQhjHIqlpm1ZXGAqRVEtJ1VnjqD94EKOxpbaQ-9tGMD50l_J4s4pV6wAZAJsDClFcPoUy4rxSxOsL0HrKWhdgtaXoLUqDJ2YVLRDB_HvK_9D33xngEo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918650275</pqid></control><display><type>article</type><title>Efficient quantum arithmetic operation circuits for quantum image processing</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Hai-Sheng ; Fan, Ping ; Xia, Haiying ; Peng, Huiling ; Long, Gui-Lu</creator><creatorcontrib>Li, Hai-Sheng ; Fan, Ping ; Xia, Haiying ; Peng, Huiling ; Long, Gui-Lu</creatorcontrib><description>Efficient quantum circuits for arithmetic operations are vital for quantum algorithms. A fault-tolerant circuit is required for a robust quantum computing in the presence of noise. Quantum circuits based on Clifford+T gates are easily rendered fault-tolerant. Therefore, reducing the T-depth and T-Count without increasing the qubit number represents vital optimization goals for quantum circuits. In this study, we propose the fault-tolerant implementations for TR and Peres gates with optimized T-depth and T-Count. Next, we design fault-tolerant circuits for quantum arithmetic operations using the TR and Peres gates. Then, we implement cyclic and complete translations of quantum images using quantum arithmetic operations, and the scalar matrix multiplication. Comparative analysis and simulation results reveal that the proposed arithmetic and image operations are efficient. For instance, cyclic translations of a quantum image produce 50% T-depth reduction relative to the previous best-known cyclic translation.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-020-1582-8</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Algorithms ; Arithmetic ; Astronomy ; Circuit design ; Circuits ; Classical and Continuum Physics ; Communication ; Design ; Equipment and supplies ; Fault tolerance ; Fourier transforms ; Gates ; Gates (circuits) ; Image processing ; Integrated circuits ; Multiplication ; Observations and Techniques ; Physics ; Physics and Astronomy ; Quantum computing ; Qubits (quantum computing) ; Semiconductor chips ; Translations</subject><ispartof>Science China. Physics, mechanics & astronomy, 2020-08, Vol.63 (8), p.280311, Article 280311</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-227afa2353a95e683269ba0724f74c8fe2c00f57055728a1c4e2b8df61dce1eb3</citedby><cites>FETCH-LOGICAL-c421t-227afa2353a95e683269ba0724f74c8fe2c00f57055728a1c4e2b8df61dce1eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11433-020-1582-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11433-020-1582-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Hai-Sheng</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Xia, Haiying</creatorcontrib><creatorcontrib>Peng, Huiling</creatorcontrib><creatorcontrib>Long, Gui-Lu</creatorcontrib><title>Efficient quantum arithmetic operation circuits for quantum image processing</title><title>Science China. Physics, mechanics & astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><description>Efficient quantum circuits for arithmetic operations are vital for quantum algorithms. A fault-tolerant circuit is required for a robust quantum computing in the presence of noise. Quantum circuits based on Clifford+T gates are easily rendered fault-tolerant. Therefore, reducing the T-depth and T-Count without increasing the qubit number represents vital optimization goals for quantum circuits. In this study, we propose the fault-tolerant implementations for TR and Peres gates with optimized T-depth and T-Count. Next, we design fault-tolerant circuits for quantum arithmetic operations using the TR and Peres gates. Then, we implement cyclic and complete translations of quantum images using quantum arithmetic operations, and the scalar matrix multiplication. Comparative analysis and simulation results reveal that the proposed arithmetic and image operations are efficient. For instance, cyclic translations of a quantum image produce 50% T-depth reduction relative to the previous best-known cyclic translation.</description><subject>Algorithms</subject><subject>Arithmetic</subject><subject>Astronomy</subject><subject>Circuit design</subject><subject>Circuits</subject><subject>Classical and Continuum Physics</subject><subject>Communication</subject><subject>Design</subject><subject>Equipment and supplies</subject><subject>Fault tolerance</subject><subject>Fourier transforms</subject><subject>Gates</subject><subject>Gates (circuits)</subject><subject>Image processing</subject><subject>Integrated circuits</subject><subject>Multiplication</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Semiconductor chips</subject><subject>Translations</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLAzEUhYMoWGp_gLsB11PznGSWpdQHFNzoOqTpzZjSmbRJZuG_N2VEV-YuEi7nuyf3IHRP8JJgLB8TIZyxGlNcE6Fora7QjKimrUlL5XV5N5LXknF1ixYpHXA5rMVc8hnabpzz1sOQq_Nohjz2lYk-f_aQva3CCaLJPgyV9dGOPqfKhfir9L3poDrFYCElP3R36MaZY4LFzz1HH0-b9_VLvX17fl2vtrXllOSaUmmcoUww0wpoFKNNuzNYUu4kt8oBtRg7IbEQkipDLAe6U3vXkL0FAjs2Rw_T3GJ9HiFlfQhjHIqlpm1ZXGAqRVEtJ1VnjqD94EKOxpbaQ-9tGMD50l_J4s4pV6wAZAJsDClFcPoUy4rxSxOsL0HrKWhdgtaXoLUqDJ2YVLRDB_HvK_9D33xngEo</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Li, Hai-Sheng</creator><creator>Fan, Ping</creator><creator>Xia, Haiying</creator><creator>Peng, Huiling</creator><creator>Long, Gui-Lu</creator><general>Science China Press</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20200801</creationdate><title>Efficient quantum arithmetic operation circuits for quantum image processing</title><author>Li, Hai-Sheng ; Fan, Ping ; Xia, Haiying ; Peng, Huiling ; Long, Gui-Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-227afa2353a95e683269ba0724f74c8fe2c00f57055728a1c4e2b8df61dce1eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Arithmetic</topic><topic>Astronomy</topic><topic>Circuit design</topic><topic>Circuits</topic><topic>Classical and Continuum Physics</topic><topic>Communication</topic><topic>Design</topic><topic>Equipment and supplies</topic><topic>Fault tolerance</topic><topic>Fourier transforms</topic><topic>Gates</topic><topic>Gates (circuits)</topic><topic>Image processing</topic><topic>Integrated circuits</topic><topic>Multiplication</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Semiconductor chips</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hai-Sheng</creatorcontrib><creatorcontrib>Fan, Ping</creatorcontrib><creatorcontrib>Xia, Haiying</creatorcontrib><creatorcontrib>Peng, Huiling</creatorcontrib><creatorcontrib>Long, Gui-Lu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Science China. Physics, mechanics & astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hai-Sheng</au><au>Fan, Ping</au><au>Xia, Haiying</au><au>Peng, Huiling</au><au>Long, Gui-Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient quantum arithmetic operation circuits for quantum image processing</atitle><jtitle>Science China. Physics, mechanics & astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>63</volume><issue>8</issue><spage>280311</spage><pages>280311-</pages><artnum>280311</artnum><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>Efficient quantum circuits for arithmetic operations are vital for quantum algorithms. A fault-tolerant circuit is required for a robust quantum computing in the presence of noise. Quantum circuits based on Clifford+T gates are easily rendered fault-tolerant. Therefore, reducing the T-depth and T-Count without increasing the qubit number represents vital optimization goals for quantum circuits. In this study, we propose the fault-tolerant implementations for TR and Peres gates with optimized T-depth and T-Count. Next, we design fault-tolerant circuits for quantum arithmetic operations using the TR and Peres gates. Then, we implement cyclic and complete translations of quantum images using quantum arithmetic operations, and the scalar matrix multiplication. Comparative analysis and simulation results reveal that the proposed arithmetic and image operations are efficient. For instance, cyclic translations of a quantum image produce 50% T-depth reduction relative to the previous best-known cyclic translation.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11433-020-1582-8</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7348 |
ispartof | Science China. Physics, mechanics & astronomy, 2020-08, Vol.63 (8), p.280311, Article 280311 |
issn | 1674-7348 1869-1927 |
language | eng |
recordid | cdi_proquest_journals_2918650275 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Algorithms Arithmetic Astronomy Circuit design Circuits Classical and Continuum Physics Communication Design Equipment and supplies Fault tolerance Fourier transforms Gates Gates (circuits) Image processing Integrated circuits Multiplication Observations and Techniques Physics Physics and Astronomy Quantum computing Qubits (quantum computing) Semiconductor chips Translations |
title | Efficient quantum arithmetic operation circuits for quantum image processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20quantum%20arithmetic%20operation%20circuits%20for%20quantum%20image%20processing&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Li,%20Hai-Sheng&rft.date=2020-08-01&rft.volume=63&rft.issue=8&rft.spage=280311&rft.pages=280311-&rft.artnum=280311&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-020-1582-8&rft_dat=%3Cgale_proqu%3EA726942483%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918650275&rft_id=info:pmid/&rft_galeid=A726942483&rfr_iscdi=true |