An improved bound for the de Bruijn–Newman constant

The Riemann hypothesis is equivalent to the conjecture that the de Bruijn–Newman constant Λ satisfies Λ≤0. However, so far all the bounds that have been proved for Λ go in the other direction, and provide support for the conjecture of Newman that Λ≥0. This paper shows how to improve previous lower b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2000-01, Vol.25 (1-4), p.293-303
1. Verfasser: Odlyzko, A.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 303
container_issue 1-4
container_start_page 293
container_title Numerical algorithms
container_volume 25
creator Odlyzko, A.M
description The Riemann hypothesis is equivalent to the conjecture that the de Bruijn–Newman constant Λ satisfies Λ≤0. However, so far all the bounds that have been proved for Λ go in the other direction, and provide support for the conjecture of Newman that Λ≥0. This paper shows how to improve previous lower bounds and prove that −2.7⋅10−9
doi_str_mv 10.1023/A:1016677511798
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2918650211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918650211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-9af4af98f7021ee04eb83b8300b66c42ced2cfc15c6ca24567c4ab636a1890fb3</originalsourceid><addsrcrecordid>eNotjstKBDEURIMoOI6u3QZcR--9ebtrB18w6EbXQzqd4DROWvuhW__BP_RLbFAoOLU6VYydIpwjkLyoLhHQGGs1ovVujy1QWxKejN6fO6AVKL07ZEfD0AIgANkF01Xh291b332khtfdVBqeu56PL4k3iV_107YtP1_fD-lzFwqPXRnGUMZjdpDD65BO_rlkzzfXT6s7sX68vV9VaxGJ7Ch8yCpk77IFwpRApdrJOQC1MVFRTA3FHFFHEwMpbWxUoTbSBHQeci2X7OzPOx98n9Iwbtpu6ss8uSGPzujZi_IXa3dH2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918650211</pqid></control><display><type>article</type><title>An improved bound for the de Bruijn–Newman constant</title><source>SpringerLink Journals - AutoHoldings</source><creator>Odlyzko, A.M</creator><creatorcontrib>Odlyzko, A.M</creatorcontrib><description>The Riemann hypothesis is equivalent to the conjecture that the de Bruijn–Newman constant Λ satisfies Λ≤0. However, so far all the bounds that have been proved for Λ go in the other direction, and provide support for the conjecture of Newman that Λ≥0. This paper shows how to improve previous lower bounds and prove that −2.7⋅10−9&lt;Λ. This can be done using a pair of zeros of the Riemann zeta function near zero number 1020 that are unusually close together. The new bound provides yet more evidence that the Riemann hypothesis, if true, is just barely true.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1023/A:1016677511798</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Hypotheses ; Lower bounds</subject><ispartof>Numerical algorithms, 2000-01, Vol.25 (1-4), p.293-303</ispartof><rights>Kluwer Academic Publishers 2000.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-9af4af98f7021ee04eb83b8300b66c42ced2cfc15c6ca24567c4ab636a1890fb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Odlyzko, A.M</creatorcontrib><title>An improved bound for the de Bruijn–Newman constant</title><title>Numerical algorithms</title><description>The Riemann hypothesis is equivalent to the conjecture that the de Bruijn–Newman constant Λ satisfies Λ≤0. However, so far all the bounds that have been proved for Λ go in the other direction, and provide support for the conjecture of Newman that Λ≥0. This paper shows how to improve previous lower bounds and prove that −2.7⋅10−9&lt;Λ. This can be done using a pair of zeros of the Riemann zeta function near zero number 1020 that are unusually close together. The new bound provides yet more evidence that the Riemann hypothesis, if true, is just barely true.</description><subject>Hypotheses</subject><subject>Lower bounds</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotjstKBDEURIMoOI6u3QZcR--9ebtrB18w6EbXQzqd4DROWvuhW__BP_RLbFAoOLU6VYydIpwjkLyoLhHQGGs1ovVujy1QWxKejN6fO6AVKL07ZEfD0AIgANkF01Xh291b332khtfdVBqeu56PL4k3iV_107YtP1_fD-lzFwqPXRnGUMZjdpDD65BO_rlkzzfXT6s7sX68vV9VaxGJ7Ch8yCpk77IFwpRApdrJOQC1MVFRTA3FHFFHEwMpbWxUoTbSBHQeci2X7OzPOx98n9Iwbtpu6ss8uSGPzujZi_IXa3dH2w</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Odlyzko, A.M</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20000101</creationdate><title>An improved bound for the de Bruijn–Newman constant</title><author>Odlyzko, A.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-9af4af98f7021ee04eb83b8300b66c42ced2cfc15c6ca24567c4ab636a1890fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Hypotheses</topic><topic>Lower bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odlyzko, A.M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odlyzko, A.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved bound for the de Bruijn–Newman constant</atitle><jtitle>Numerical algorithms</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>25</volume><issue>1-4</issue><spage>293</spage><epage>303</epage><pages>293-303</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>The Riemann hypothesis is equivalent to the conjecture that the de Bruijn–Newman constant Λ satisfies Λ≤0. However, so far all the bounds that have been proved for Λ go in the other direction, and provide support for the conjecture of Newman that Λ≥0. This paper shows how to improve previous lower bounds and prove that −2.7⋅10−9&lt;Λ. This can be done using a pair of zeros of the Riemann zeta function near zero number 1020 that are unusually close together. The new bound provides yet more evidence that the Riemann hypothesis, if true, is just barely true.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1016677511798</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2000-01, Vol.25 (1-4), p.293-303
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918650211
source SpringerLink Journals - AutoHoldings
subjects Hypotheses
Lower bounds
title An improved bound for the de Bruijn–Newman constant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A11%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20bound%20for%20the%20de%20Bruijn%E2%80%93Newman%20constant&rft.jtitle=Numerical%20algorithms&rft.au=Odlyzko,%20A.M&rft.date=2000-01-01&rft.volume=25&rft.issue=1-4&rft.spage=293&rft.epage=303&rft.pages=293-303&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1023/A:1016677511798&rft_dat=%3Cproquest%3E2918650211%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918650211&rft_id=info:pmid/&rfr_iscdi=true