An improved bound for the de Bruijn–Newman constant
The Riemann hypothesis is equivalent to the conjecture that the de Bruijn–Newman constant Λ satisfies Λ≤0. However, so far all the bounds that have been proved for Λ go in the other direction, and provide support for the conjecture of Newman that Λ≥0. This paper shows how to improve previous lower b...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2000-01, Vol.25 (1-4), p.293-303 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 303 |
---|---|
container_issue | 1-4 |
container_start_page | 293 |
container_title | Numerical algorithms |
container_volume | 25 |
creator | Odlyzko, A.M |
description | The Riemann hypothesis is equivalent to the conjecture that the de Bruijn–Newman constant Λ satisfies Λ≤0. However, so far all the bounds that have been proved for Λ go in the other direction, and provide support for the conjecture of Newman that Λ≥0. This paper shows how to improve previous lower bounds and prove that −2.7⋅10−9 |
doi_str_mv | 10.1023/A:1016677511798 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2918650211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918650211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-9af4af98f7021ee04eb83b8300b66c42ced2cfc15c6ca24567c4ab636a1890fb3</originalsourceid><addsrcrecordid>eNotjstKBDEURIMoOI6u3QZcR--9ebtrB18w6EbXQzqd4DROWvuhW__BP_RLbFAoOLU6VYydIpwjkLyoLhHQGGs1ovVujy1QWxKejN6fO6AVKL07ZEfD0AIgANkF01Xh291b332khtfdVBqeu56PL4k3iV_107YtP1_fD-lzFwqPXRnGUMZjdpDD65BO_rlkzzfXT6s7sX68vV9VaxGJ7Ch8yCpk77IFwpRApdrJOQC1MVFRTA3FHFFHEwMpbWxUoTbSBHQeci2X7OzPOx98n9Iwbtpu6ss8uSGPzujZi_IXa3dH2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918650211</pqid></control><display><type>article</type><title>An improved bound for the de Bruijn–Newman constant</title><source>SpringerLink Journals - AutoHoldings</source><creator>Odlyzko, A.M</creator><creatorcontrib>Odlyzko, A.M</creatorcontrib><description>The Riemann hypothesis is equivalent to the conjecture that the de Bruijn–Newman constant Λ satisfies Λ≤0. However, so far all the bounds that have been proved for Λ go in the other direction, and provide support for the conjecture of Newman that Λ≥0. This paper shows how to improve previous lower bounds and prove that −2.7⋅10−9<Λ. This can be done using a pair of zeros of the Riemann zeta function near zero number 1020 that are unusually close together. The new bound provides yet more evidence that the Riemann hypothesis, if true, is just barely true.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1023/A:1016677511798</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Hypotheses ; Lower bounds</subject><ispartof>Numerical algorithms, 2000-01, Vol.25 (1-4), p.293-303</ispartof><rights>Kluwer Academic Publishers 2000.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-9af4af98f7021ee04eb83b8300b66c42ced2cfc15c6ca24567c4ab636a1890fb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Odlyzko, A.M</creatorcontrib><title>An improved bound for the de Bruijn–Newman constant</title><title>Numerical algorithms</title><description>The Riemann hypothesis is equivalent to the conjecture that the de Bruijn–Newman constant Λ satisfies Λ≤0. However, so far all the bounds that have been proved for Λ go in the other direction, and provide support for the conjecture of Newman that Λ≥0. This paper shows how to improve previous lower bounds and prove that −2.7⋅10−9<Λ. This can be done using a pair of zeros of the Riemann zeta function near zero number 1020 that are unusually close together. The new bound provides yet more evidence that the Riemann hypothesis, if true, is just barely true.</description><subject>Hypotheses</subject><subject>Lower bounds</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotjstKBDEURIMoOI6u3QZcR--9ebtrB18w6EbXQzqd4DROWvuhW__BP_RLbFAoOLU6VYydIpwjkLyoLhHQGGs1ovVujy1QWxKejN6fO6AVKL07ZEfD0AIgANkF01Xh291b332khtfdVBqeu56PL4k3iV_107YtP1_fD-lzFwqPXRnGUMZjdpDD65BO_rlkzzfXT6s7sX68vV9VaxGJ7Ch8yCpk77IFwpRApdrJOQC1MVFRTA3FHFFHEwMpbWxUoTbSBHQeci2X7OzPOx98n9Iwbtpu6ss8uSGPzujZi_IXa3dH2w</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Odlyzko, A.M</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20000101</creationdate><title>An improved bound for the de Bruijn–Newman constant</title><author>Odlyzko, A.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-9af4af98f7021ee04eb83b8300b66c42ced2cfc15c6ca24567c4ab636a1890fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Hypotheses</topic><topic>Lower bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odlyzko, A.M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odlyzko, A.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved bound for the de Bruijn–Newman constant</atitle><jtitle>Numerical algorithms</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>25</volume><issue>1-4</issue><spage>293</spage><epage>303</epage><pages>293-303</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>The Riemann hypothesis is equivalent to the conjecture that the de Bruijn–Newman constant Λ satisfies Λ≤0. However, so far all the bounds that have been proved for Λ go in the other direction, and provide support for the conjecture of Newman that Λ≥0. This paper shows how to improve previous lower bounds and prove that −2.7⋅10−9<Λ. This can be done using a pair of zeros of the Riemann zeta function near zero number 1020 that are unusually close together. The new bound provides yet more evidence that the Riemann hypothesis, if true, is just barely true.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1016677511798</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2000-01, Vol.25 (1-4), p.293-303 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_journals_2918650211 |
source | SpringerLink Journals - AutoHoldings |
subjects | Hypotheses Lower bounds |
title | An improved bound for the de Bruijn–Newman constant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A11%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20bound%20for%20the%20de%20Bruijn%E2%80%93Newman%20constant&rft.jtitle=Numerical%20algorithms&rft.au=Odlyzko,%20A.M&rft.date=2000-01-01&rft.volume=25&rft.issue=1-4&rft.spage=293&rft.epage=303&rft.pages=293-303&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1023/A:1016677511798&rft_dat=%3Cproquest%3E2918650211%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918650211&rft_id=info:pmid/&rfr_iscdi=true |