Photon condensation: A new paradigm for Bose-Einstein condensation
Bose-Einstein condensation is a state of matter known to be responsible for peculiar properties exhibited by superfluid Helium-4 and superconductors. Bose-Einstein condensate (BEC) in its pure form is realizable with alkali atoms under ultra-cold temperatures. In this paper, we review the experiment...
Gespeichert in:
Veröffentlicht in: | Frontiers of physics 2016-10, Vol.11 (5), p.103-110, Article 110502 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bose-Einstein condensation is a state of matter known to be responsible for peculiar properties exhibited by superfluid Helium-4 and superconductors. Bose-Einstein condensate (BEC) in its pure form is realizable with alkali atoms under ultra-cold temperatures. In this paper, we review the experimental scheme that demonstrates the atomic Bose-Einstein condensate. We also elaborate on the theoretical framework for atomic Bose-Einstein condensation, which includes statistical mechan- ics and the Gross-Pitaevskii equation. As an extension, we discuss Bose-Einstein condensation of photons realized in a fluorescent dye filled optical microcavity. We analyze this phenomenon based on the generalized Planck's law in statistical mechanics. Further, a comparison is made between photon condensateand laser. We describe how photon condensate may be a possible alternative for lasers since it does not require an energy consuming population inversion process. |
---|---|
ISSN: | 2095-0462 2095-0470 |
DOI: | 10.1007/s11467-016-0568-3 |