Wave effect of gravitational waves intersected with a microlens field: A new algorithm and supplementary study

The increase in gravitational wave (GW) events has allowed receiving strong lensing image pairs of GWs. However, the wave effect (diffraction and interference) due to the microlens field contaminates the parameter estimation of the image pair, which may lead to a misjudgment of strong lensing signal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2023-03, Vol.66 (3), p.239511, Article 239511
Hauptverfasser: Shan, Xikai, Li, Guoliang, Chen, Xuechun, Zheng, Wenwen, Zhao, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 239511
container_title Science China. Physics, mechanics & astronomy
container_volume 66
creator Shan, Xikai
Li, Guoliang
Chen, Xuechun
Zheng, Wenwen
Zhao, Wen
description The increase in gravitational wave (GW) events has allowed receiving strong lensing image pairs of GWs. However, the wave effect (diffraction and interference) due to the microlens field contaminates the parameter estimation of the image pair, which may lead to a misjudgment of strong lensing signals. To quantify the influence of the microlens field, researchers need a large sample of statistical research. Nevertheless, due to the oscillation characteristic, the Fresnel-Kirchhoff diffraction integral’s computational time hinders this aspect’s study. Although many algorithms are available, most cannot be well applied to the case where the microlens field is embedded in galaxy/galaxy clusters. This work proposes a faster and more accurate algorithm for studying the wave optics effect of microlenses embedded in different types of strong lensing images. Additionally, we provide a quantitative estimation criterion for the lens plane boundary for the Fresnel-Kirchhoff diffraction integral. This algorithm can significantly facilitate the study of wave optics, particularly in the case of microlens fields embedded in galaxy/galaxy clusters.
doi_str_mv 10.1007/s11433-022-1985-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918648018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A738531536</galeid><sourcerecordid>A738531536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-3e617adce8fd31d40ec8c7edf8fd9f6a6b6c5f90f0ef46bb4426a9b51d915c5a3</originalsourceid><addsrcrecordid>eNp1kUtPAyEUhSdGExv1B7gjcT0VhsfMuGsaX4mJG41LQuFSaaZMBWrjv_eaMXElLLgXvkM4nKq6ZHTOKG2vM2OC85o2Tc36Ttb8qJqxTvXYNe0x1qoVdctFd1pd5LyhOHhPRStmVXwzn0DAe7CFjJ6sk_kMxZQwRjOQAx5mEmKBlBEARw6hvBNDtsGmcYCYiQ8wuBuyIBEOxAzrMSGxJSY6kve73QBbiMWkL5LL3n2dVyfeDBkuftez6vXu9mX5UD893z8uF0-15VKWmoNirXEWOu84c4KC7WwLzmPfe2XUSlnpe-opeKFWKyEaZfqVZK5n0krDz6qr6d5dGj_2kIvejPuElrJuevwa0VHWITWfqLUZQIfox5KMxekADY4RfMD9Rcs7yZnkCgVsEqD7nBN4vUthi-40o_onCj1FoTEK_ROF5qhpJk1GNq4h_T3lf9E3AA-Nvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918648018</pqid></control><display><type>article</type><title>Wave effect of gravitational waves intersected with a microlens field: A new algorithm and supplementary study</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shan, Xikai ; Li, Guoliang ; Chen, Xuechun ; Zheng, Wenwen ; Zhao, Wen</creator><creatorcontrib>Shan, Xikai ; Li, Guoliang ; Chen, Xuechun ; Zheng, Wenwen ; Zhao, Wen</creatorcontrib><description>The increase in gravitational wave (GW) events has allowed receiving strong lensing image pairs of GWs. However, the wave effect (diffraction and interference) due to the microlens field contaminates the parameter estimation of the image pair, which may lead to a misjudgment of strong lensing signals. To quantify the influence of the microlens field, researchers need a large sample of statistical research. Nevertheless, due to the oscillation characteristic, the Fresnel-Kirchhoff diffraction integral’s computational time hinders this aspect’s study. Although many algorithms are available, most cannot be well applied to the case where the microlens field is embedded in galaxy/galaxy clusters. This work proposes a faster and more accurate algorithm for studying the wave optics effect of microlenses embedded in different types of strong lensing images. Additionally, we provide a quantitative estimation criterion for the lens plane boundary for the Fresnel-Kirchhoff diffraction integral. This algorithm can significantly facilitate the study of wave optics, particularly in the case of microlens fields embedded in galaxy/galaxy clusters.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-022-1985-3</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Algorithms ; Astronomy ; Classical and Continuum Physics ; Computing time ; Galactic clusters ; Gravitational waves ; Microlenses ; Observations and Techniques ; Optics ; Parameter estimation ; Physics ; Physics and Astronomy ; Wave diffraction</subject><ispartof>Science China. Physics, mechanics &amp; astronomy, 2023-03, Vol.66 (3), p.239511, Article 239511</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-3e617adce8fd31d40ec8c7edf8fd9f6a6b6c5f90f0ef46bb4426a9b51d915c5a3</citedby><cites>FETCH-LOGICAL-c355t-3e617adce8fd31d40ec8c7edf8fd9f6a6b6c5f90f0ef46bb4426a9b51d915c5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11433-022-1985-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11433-022-1985-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shan, Xikai</creatorcontrib><creatorcontrib>Li, Guoliang</creatorcontrib><creatorcontrib>Chen, Xuechun</creatorcontrib><creatorcontrib>Zheng, Wenwen</creatorcontrib><creatorcontrib>Zhao, Wen</creatorcontrib><title>Wave effect of gravitational waves intersected with a microlens field: A new algorithm and supplementary study</title><title>Science China. Physics, mechanics &amp; astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><description>The increase in gravitational wave (GW) events has allowed receiving strong lensing image pairs of GWs. However, the wave effect (diffraction and interference) due to the microlens field contaminates the parameter estimation of the image pair, which may lead to a misjudgment of strong lensing signals. To quantify the influence of the microlens field, researchers need a large sample of statistical research. Nevertheless, due to the oscillation characteristic, the Fresnel-Kirchhoff diffraction integral’s computational time hinders this aspect’s study. Although many algorithms are available, most cannot be well applied to the case where the microlens field is embedded in galaxy/galaxy clusters. This work proposes a faster and more accurate algorithm for studying the wave optics effect of microlenses embedded in different types of strong lensing images. Additionally, we provide a quantitative estimation criterion for the lens plane boundary for the Fresnel-Kirchhoff diffraction integral. This algorithm can significantly facilitate the study of wave optics, particularly in the case of microlens fields embedded in galaxy/galaxy clusters.</description><subject>Algorithms</subject><subject>Astronomy</subject><subject>Classical and Continuum Physics</subject><subject>Computing time</subject><subject>Galactic clusters</subject><subject>Gravitational waves</subject><subject>Microlenses</subject><subject>Observations and Techniques</subject><subject>Optics</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Wave diffraction</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kUtPAyEUhSdGExv1B7gjcT0VhsfMuGsaX4mJG41LQuFSaaZMBWrjv_eaMXElLLgXvkM4nKq6ZHTOKG2vM2OC85o2Tc36Ttb8qJqxTvXYNe0x1qoVdctFd1pd5LyhOHhPRStmVXwzn0DAe7CFjJ6sk_kMxZQwRjOQAx5mEmKBlBEARw6hvBNDtsGmcYCYiQ8wuBuyIBEOxAzrMSGxJSY6kve73QBbiMWkL5LL3n2dVyfeDBkuftez6vXu9mX5UD893z8uF0-15VKWmoNirXEWOu84c4KC7WwLzmPfe2XUSlnpe-opeKFWKyEaZfqVZK5n0krDz6qr6d5dGj_2kIvejPuElrJuevwa0VHWITWfqLUZQIfox5KMxekADY4RfMD9Rcs7yZnkCgVsEqD7nBN4vUthi-40o_onCj1FoTEK_ROF5qhpJk1GNq4h_T3lf9E3AA-Nvw</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Shan, Xikai</creator><creator>Li, Guoliang</creator><creator>Chen, Xuechun</creator><creator>Zheng, Wenwen</creator><creator>Zhao, Wen</creator><general>Science China Press</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230301</creationdate><title>Wave effect of gravitational waves intersected with a microlens field: A new algorithm and supplementary study</title><author>Shan, Xikai ; Li, Guoliang ; Chen, Xuechun ; Zheng, Wenwen ; Zhao, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-3e617adce8fd31d40ec8c7edf8fd9f6a6b6c5f90f0ef46bb4426a9b51d915c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Astronomy</topic><topic>Classical and Continuum Physics</topic><topic>Computing time</topic><topic>Galactic clusters</topic><topic>Gravitational waves</topic><topic>Microlenses</topic><topic>Observations and Techniques</topic><topic>Optics</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Xikai</creatorcontrib><creatorcontrib>Li, Guoliang</creatorcontrib><creatorcontrib>Chen, Xuechun</creatorcontrib><creatorcontrib>Zheng, Wenwen</creatorcontrib><creatorcontrib>Zhao, Wen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Xikai</au><au>Li, Guoliang</au><au>Chen, Xuechun</au><au>Zheng, Wenwen</au><au>Zhao, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave effect of gravitational waves intersected with a microlens field: A new algorithm and supplementary study</atitle><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>66</volume><issue>3</issue><spage>239511</spage><pages>239511-</pages><artnum>239511</artnum><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>The increase in gravitational wave (GW) events has allowed receiving strong lensing image pairs of GWs. However, the wave effect (diffraction and interference) due to the microlens field contaminates the parameter estimation of the image pair, which may lead to a misjudgment of strong lensing signals. To quantify the influence of the microlens field, researchers need a large sample of statistical research. Nevertheless, due to the oscillation characteristic, the Fresnel-Kirchhoff diffraction integral’s computational time hinders this aspect’s study. Although many algorithms are available, most cannot be well applied to the case where the microlens field is embedded in galaxy/galaxy clusters. This work proposes a faster and more accurate algorithm for studying the wave optics effect of microlenses embedded in different types of strong lensing images. Additionally, we provide a quantitative estimation criterion for the lens plane boundary for the Fresnel-Kirchhoff diffraction integral. This algorithm can significantly facilitate the study of wave optics, particularly in the case of microlens fields embedded in galaxy/galaxy clusters.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11433-022-1985-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 1674-7348
ispartof Science China. Physics, mechanics & astronomy, 2023-03, Vol.66 (3), p.239511, Article 239511
issn 1674-7348
1869-1927
language eng
recordid cdi_proquest_journals_2918648018
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Algorithms
Astronomy
Classical and Continuum Physics
Computing time
Galactic clusters
Gravitational waves
Microlenses
Observations and Techniques
Optics
Parameter estimation
Physics
Physics and Astronomy
Wave diffraction
title Wave effect of gravitational waves intersected with a microlens field: A new algorithm and supplementary study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%20effect%20of%20gravitational%20waves%20intersected%20with%20a%20microlens%20field:%20A%20new%20algorithm%20and%20supplementary%20study&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Shan,%20Xikai&rft.date=2023-03-01&rft.volume=66&rft.issue=3&rft.spage=239511&rft.pages=239511-&rft.artnum=239511&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-022-1985-3&rft_dat=%3Cgale_proqu%3EA738531536%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918648018&rft_id=info:pmid/&rft_galeid=A738531536&rfr_iscdi=true