Wave effect of gravitational waves intersected with a microlens field: A new algorithm and supplementary study
The increase in gravitational wave (GW) events has allowed receiving strong lensing image pairs of GWs. However, the wave effect (diffraction and interference) due to the microlens field contaminates the parameter estimation of the image pair, which may lead to a misjudgment of strong lensing signal...
Gespeichert in:
Veröffentlicht in: | Science China. Physics, mechanics & astronomy mechanics & astronomy, 2023-03, Vol.66 (3), p.239511, Article 239511 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 239511 |
container_title | Science China. Physics, mechanics & astronomy |
container_volume | 66 |
creator | Shan, Xikai Li, Guoliang Chen, Xuechun Zheng, Wenwen Zhao, Wen |
description | The increase in gravitational wave (GW) events has allowed receiving strong lensing image pairs of GWs. However, the wave effect (diffraction and interference) due to the microlens field contaminates the parameter estimation of the image pair, which may lead to a misjudgment of strong lensing signals. To quantify the influence of the microlens field, researchers need a large sample of statistical research. Nevertheless, due to the oscillation characteristic, the Fresnel-Kirchhoff diffraction integral’s computational time hinders this aspect’s study. Although many algorithms are available, most cannot be well applied to the case where the microlens field is embedded in galaxy/galaxy clusters. This work proposes a faster and more accurate algorithm for studying the wave optics effect of microlenses embedded in different types of strong lensing images. Additionally, we provide a quantitative estimation criterion for the lens plane boundary for the Fresnel-Kirchhoff diffraction integral. This algorithm can significantly facilitate the study of wave optics, particularly in the case of microlens fields embedded in galaxy/galaxy clusters. |
doi_str_mv | 10.1007/s11433-022-1985-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918648018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A738531536</galeid><sourcerecordid>A738531536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-3e617adce8fd31d40ec8c7edf8fd9f6a6b6c5f90f0ef46bb4426a9b51d915c5a3</originalsourceid><addsrcrecordid>eNp1kUtPAyEUhSdGExv1B7gjcT0VhsfMuGsaX4mJG41LQuFSaaZMBWrjv_eaMXElLLgXvkM4nKq6ZHTOKG2vM2OC85o2Tc36Ttb8qJqxTvXYNe0x1qoVdctFd1pd5LyhOHhPRStmVXwzn0DAe7CFjJ6sk_kMxZQwRjOQAx5mEmKBlBEARw6hvBNDtsGmcYCYiQ8wuBuyIBEOxAzrMSGxJSY6kve73QBbiMWkL5LL3n2dVyfeDBkuftez6vXu9mX5UD893z8uF0-15VKWmoNirXEWOu84c4KC7WwLzmPfe2XUSlnpe-opeKFWKyEaZfqVZK5n0krDz6qr6d5dGj_2kIvejPuElrJuevwa0VHWITWfqLUZQIfox5KMxekADY4RfMD9Rcs7yZnkCgVsEqD7nBN4vUthi-40o_onCj1FoTEK_ROF5qhpJk1GNq4h_T3lf9E3AA-Nvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918648018</pqid></control><display><type>article</type><title>Wave effect of gravitational waves intersected with a microlens field: A new algorithm and supplementary study</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shan, Xikai ; Li, Guoliang ; Chen, Xuechun ; Zheng, Wenwen ; Zhao, Wen</creator><creatorcontrib>Shan, Xikai ; Li, Guoliang ; Chen, Xuechun ; Zheng, Wenwen ; Zhao, Wen</creatorcontrib><description>The increase in gravitational wave (GW) events has allowed receiving strong lensing image pairs of GWs. However, the wave effect (diffraction and interference) due to the microlens field contaminates the parameter estimation of the image pair, which may lead to a misjudgment of strong lensing signals. To quantify the influence of the microlens field, researchers need a large sample of statistical research. Nevertheless, due to the oscillation characteristic, the Fresnel-Kirchhoff diffraction integral’s computational time hinders this aspect’s study. Although many algorithms are available, most cannot be well applied to the case where the microlens field is embedded in galaxy/galaxy clusters. This work proposes a faster and more accurate algorithm for studying the wave optics effect of microlenses embedded in different types of strong lensing images. Additionally, we provide a quantitative estimation criterion for the lens plane boundary for the Fresnel-Kirchhoff diffraction integral. This algorithm can significantly facilitate the study of wave optics, particularly in the case of microlens fields embedded in galaxy/galaxy clusters.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-022-1985-3</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Algorithms ; Astronomy ; Classical and Continuum Physics ; Computing time ; Galactic clusters ; Gravitational waves ; Microlenses ; Observations and Techniques ; Optics ; Parameter estimation ; Physics ; Physics and Astronomy ; Wave diffraction</subject><ispartof>Science China. Physics, mechanics & astronomy, 2023-03, Vol.66 (3), p.239511, Article 239511</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-3e617adce8fd31d40ec8c7edf8fd9f6a6b6c5f90f0ef46bb4426a9b51d915c5a3</citedby><cites>FETCH-LOGICAL-c355t-3e617adce8fd31d40ec8c7edf8fd9f6a6b6c5f90f0ef46bb4426a9b51d915c5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11433-022-1985-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11433-022-1985-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shan, Xikai</creatorcontrib><creatorcontrib>Li, Guoliang</creatorcontrib><creatorcontrib>Chen, Xuechun</creatorcontrib><creatorcontrib>Zheng, Wenwen</creatorcontrib><creatorcontrib>Zhao, Wen</creatorcontrib><title>Wave effect of gravitational waves intersected with a microlens field: A new algorithm and supplementary study</title><title>Science China. Physics, mechanics & astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><description>The increase in gravitational wave (GW) events has allowed receiving strong lensing image pairs of GWs. However, the wave effect (diffraction and interference) due to the microlens field contaminates the parameter estimation of the image pair, which may lead to a misjudgment of strong lensing signals. To quantify the influence of the microlens field, researchers need a large sample of statistical research. Nevertheless, due to the oscillation characteristic, the Fresnel-Kirchhoff diffraction integral’s computational time hinders this aspect’s study. Although many algorithms are available, most cannot be well applied to the case where the microlens field is embedded in galaxy/galaxy clusters. This work proposes a faster and more accurate algorithm for studying the wave optics effect of microlenses embedded in different types of strong lensing images. Additionally, we provide a quantitative estimation criterion for the lens plane boundary for the Fresnel-Kirchhoff diffraction integral. This algorithm can significantly facilitate the study of wave optics, particularly in the case of microlens fields embedded in galaxy/galaxy clusters.</description><subject>Algorithms</subject><subject>Astronomy</subject><subject>Classical and Continuum Physics</subject><subject>Computing time</subject><subject>Galactic clusters</subject><subject>Gravitational waves</subject><subject>Microlenses</subject><subject>Observations and Techniques</subject><subject>Optics</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Wave diffraction</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kUtPAyEUhSdGExv1B7gjcT0VhsfMuGsaX4mJG41LQuFSaaZMBWrjv_eaMXElLLgXvkM4nKq6ZHTOKG2vM2OC85o2Tc36Ttb8qJqxTvXYNe0x1qoVdctFd1pd5LyhOHhPRStmVXwzn0DAe7CFjJ6sk_kMxZQwRjOQAx5mEmKBlBEARw6hvBNDtsGmcYCYiQ8wuBuyIBEOxAzrMSGxJSY6kve73QBbiMWkL5LL3n2dVyfeDBkuftez6vXu9mX5UD893z8uF0-15VKWmoNirXEWOu84c4KC7WwLzmPfe2XUSlnpe-opeKFWKyEaZfqVZK5n0krDz6qr6d5dGj_2kIvejPuElrJuevwa0VHWITWfqLUZQIfox5KMxekADY4RfMD9Rcs7yZnkCgVsEqD7nBN4vUthi-40o_onCj1FoTEK_ROF5qhpJk1GNq4h_T3lf9E3AA-Nvw</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Shan, Xikai</creator><creator>Li, Guoliang</creator><creator>Chen, Xuechun</creator><creator>Zheng, Wenwen</creator><creator>Zhao, Wen</creator><general>Science China Press</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230301</creationdate><title>Wave effect of gravitational waves intersected with a microlens field: A new algorithm and supplementary study</title><author>Shan, Xikai ; Li, Guoliang ; Chen, Xuechun ; Zheng, Wenwen ; Zhao, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-3e617adce8fd31d40ec8c7edf8fd9f6a6b6c5f90f0ef46bb4426a9b51d915c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Astronomy</topic><topic>Classical and Continuum Physics</topic><topic>Computing time</topic><topic>Galactic clusters</topic><topic>Gravitational waves</topic><topic>Microlenses</topic><topic>Observations and Techniques</topic><topic>Optics</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Xikai</creatorcontrib><creatorcontrib>Li, Guoliang</creatorcontrib><creatorcontrib>Chen, Xuechun</creatorcontrib><creatorcontrib>Zheng, Wenwen</creatorcontrib><creatorcontrib>Zhao, Wen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Science China. Physics, mechanics & astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Xikai</au><au>Li, Guoliang</au><au>Chen, Xuechun</au><au>Zheng, Wenwen</au><au>Zhao, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave effect of gravitational waves intersected with a microlens field: A new algorithm and supplementary study</atitle><jtitle>Science China. Physics, mechanics & astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>66</volume><issue>3</issue><spage>239511</spage><pages>239511-</pages><artnum>239511</artnum><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>The increase in gravitational wave (GW) events has allowed receiving strong lensing image pairs of GWs. However, the wave effect (diffraction and interference) due to the microlens field contaminates the parameter estimation of the image pair, which may lead to a misjudgment of strong lensing signals. To quantify the influence of the microlens field, researchers need a large sample of statistical research. Nevertheless, due to the oscillation characteristic, the Fresnel-Kirchhoff diffraction integral’s computational time hinders this aspect’s study. Although many algorithms are available, most cannot be well applied to the case where the microlens field is embedded in galaxy/galaxy clusters. This work proposes a faster and more accurate algorithm for studying the wave optics effect of microlenses embedded in different types of strong lensing images. Additionally, we provide a quantitative estimation criterion for the lens plane boundary for the Fresnel-Kirchhoff diffraction integral. This algorithm can significantly facilitate the study of wave optics, particularly in the case of microlens fields embedded in galaxy/galaxy clusters.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11433-022-1985-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7348 |
ispartof | Science China. Physics, mechanics & astronomy, 2023-03, Vol.66 (3), p.239511, Article 239511 |
issn | 1674-7348 1869-1927 |
language | eng |
recordid | cdi_proquest_journals_2918648018 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Astronomy Classical and Continuum Physics Computing time Galactic clusters Gravitational waves Microlenses Observations and Techniques Optics Parameter estimation Physics Physics and Astronomy Wave diffraction |
title | Wave effect of gravitational waves intersected with a microlens field: A new algorithm and supplementary study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%20effect%20of%20gravitational%20waves%20intersected%20with%20a%20microlens%20field:%20A%20new%20algorithm%20and%20supplementary%20study&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Shan,%20Xikai&rft.date=2023-03-01&rft.volume=66&rft.issue=3&rft.spage=239511&rft.pages=239511-&rft.artnum=239511&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-022-1985-3&rft_dat=%3Cgale_proqu%3EA738531536%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918648018&rft_id=info:pmid/&rft_galeid=A738531536&rfr_iscdi=true |