Trajectory prediction of cyclist based on dynamic Bayesian network and long short-term memory model at unsignalized intersections

Cyclist trajectory prediction is of great significance for both active collision avoidance and path planning of intelligent vehicles. This paper presents a trajectory prediction method for the motion intention of cyclists in real traffic scenarios. This method is based on dynamic Bayesian network (D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Information sciences 2021-07, Vol.64 (7), p.172207, Article 172207
Hauptverfasser: Gao, Hongbo, Su, Hang, Cai, Yingfeng, Wu, Renfei, Hao, Zhengyuan, Xu, Yongneng, Wu, Wei, Wang, Jianqing, Li, Zhijun, Kan, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 172207
container_title Science China. Information sciences
container_volume 64
creator Gao, Hongbo
Su, Hang
Cai, Yingfeng
Wu, Renfei
Hao, Zhengyuan
Xu, Yongneng
Wu, Wei
Wang, Jianqing
Li, Zhijun
Kan, Zhen
description Cyclist trajectory prediction is of great significance for both active collision avoidance and path planning of intelligent vehicles. This paper presents a trajectory prediction method for the motion intention of cyclists in real traffic scenarios. This method is based on dynamic Bayesian network (DBN) and long short-term memory (LSTM). The motion intention of cyclists is hard to predict owing to potential large uncertainties. The DBN is used to infer the distribution of cyclists’ intentions at intersections to improve the prediction time. The LSTM with encoder-decoder is used to predict the cyclists’ trajectories to improve the accuracy of prediction. Therefore, the DBN and LSTM are adopted to guarantee prediction accuracy and improve the prediction time. The experiment results are presented to show the effectiveness of the predict strategies.
doi_str_mv 10.1007/s11432-020-3071-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918647986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918647986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-7ad7cb031b30915246b3948d7751811b9353c0c7c8af9f5dbcdae94914190a563</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxRdRsNR-AG8Bz9HMZrfZHLX4DwpeKngL2SRbU3eTmqTIevObm1rBk3OZYXjvzfArinMgl0AIu4oAFS0xKQmmhAFujooJNHOOgQM_zvOcVZhR-nJazGLckFyUkpI1k-JrFeTGqOTDiLbBaKuS9Q75DqlR9TYm1MpoNMo7PTo5WIVu5GiilQ45kz58eEPSadR7t0bx1YeEkwkDGsywjxy8Nj2SCe1ctGsne_uZw6zLmmh-TsWz4qSTfTSz3z4tnu9uV4sHvHy6f1xcL7GqKEmYSc1USyi0lHCoy2reUl41mrEaGoCW05oqophqZMe7WrdKS8MrDhVwIus5nRYXh9xt8O87E5PY-F3IL0VR8kyrYrzZq-CgUsHHGEwntsEOMowCiNjDFgfYIsMWe9iiyZ7y4IlZ69Ym_CX_b_oGfJOD2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918647986</pqid></control><display><type>article</type><title>Trajectory prediction of cyclist based on dynamic Bayesian network and long short-term memory model at unsignalized intersections</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Gao, Hongbo ; Su, Hang ; Cai, Yingfeng ; Wu, Renfei ; Hao, Zhengyuan ; Xu, Yongneng ; Wu, Wei ; Wang, Jianqing ; Li, Zhijun ; Kan, Zhen</creator><creatorcontrib>Gao, Hongbo ; Su, Hang ; Cai, Yingfeng ; Wu, Renfei ; Hao, Zhengyuan ; Xu, Yongneng ; Wu, Wei ; Wang, Jianqing ; Li, Zhijun ; Kan, Zhen</creatorcontrib><description>Cyclist trajectory prediction is of great significance for both active collision avoidance and path planning of intelligent vehicles. This paper presents a trajectory prediction method for the motion intention of cyclists in real traffic scenarios. This method is based on dynamic Bayesian network (DBN) and long short-term memory (LSTM). The motion intention of cyclists is hard to predict owing to potential large uncertainties. The DBN is used to infer the distribution of cyclists’ intentions at intersections to improve the prediction time. The LSTM with encoder-decoder is used to predict the cyclists’ trajectories to improve the accuracy of prediction. Therefore, the DBN and LSTM are adopted to guarantee prediction accuracy and improve the prediction time. The experiment results are presented to show the effectiveness of the predict strategies.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-020-3071-8</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Accuracy ; Automation ; Bayesian analysis ; Collision avoidance ; Computer Science ; Dynamical systems ; Encoders-Decoders ; Information Systems and Communication Service ; Intelligent vehicles ; Kalman filters ; Research Paper ; Science ; Traffic ; Traffic intersections ; Trajectories ; Vehicles ; Velocity</subject><ispartof>Science China. Information sciences, 2021-07, Vol.64 (7), p.172207, Article 172207</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-7ad7cb031b30915246b3948d7751811b9353c0c7c8af9f5dbcdae94914190a563</citedby><cites>FETCH-LOGICAL-c430t-7ad7cb031b30915246b3948d7751811b9353c0c7c8af9f5dbcdae94914190a563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11432-020-3071-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918647986?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Gao, Hongbo</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><creatorcontrib>Cai, Yingfeng</creatorcontrib><creatorcontrib>Wu, Renfei</creatorcontrib><creatorcontrib>Hao, Zhengyuan</creatorcontrib><creatorcontrib>Xu, Yongneng</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Wang, Jianqing</creatorcontrib><creatorcontrib>Li, Zhijun</creatorcontrib><creatorcontrib>Kan, Zhen</creatorcontrib><title>Trajectory prediction of cyclist based on dynamic Bayesian network and long short-term memory model at unsignalized intersections</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><description>Cyclist trajectory prediction is of great significance for both active collision avoidance and path planning of intelligent vehicles. This paper presents a trajectory prediction method for the motion intention of cyclists in real traffic scenarios. This method is based on dynamic Bayesian network (DBN) and long short-term memory (LSTM). The motion intention of cyclists is hard to predict owing to potential large uncertainties. The DBN is used to infer the distribution of cyclists’ intentions at intersections to improve the prediction time. The LSTM with encoder-decoder is used to predict the cyclists’ trajectories to improve the accuracy of prediction. Therefore, the DBN and LSTM are adopted to guarantee prediction accuracy and improve the prediction time. The experiment results are presented to show the effectiveness of the predict strategies.</description><subject>Accuracy</subject><subject>Automation</subject><subject>Bayesian analysis</subject><subject>Collision avoidance</subject><subject>Computer Science</subject><subject>Dynamical systems</subject><subject>Encoders-Decoders</subject><subject>Information Systems and Communication Service</subject><subject>Intelligent vehicles</subject><subject>Kalman filters</subject><subject>Research Paper</subject><subject>Science</subject><subject>Traffic</subject><subject>Traffic intersections</subject><subject>Trajectories</subject><subject>Vehicles</subject><subject>Velocity</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxRdRsNR-AG8Bz9HMZrfZHLX4DwpeKngL2SRbU3eTmqTIevObm1rBk3OZYXjvzfArinMgl0AIu4oAFS0xKQmmhAFujooJNHOOgQM_zvOcVZhR-nJazGLckFyUkpI1k-JrFeTGqOTDiLbBaKuS9Q75DqlR9TYm1MpoNMo7PTo5WIVu5GiilQ45kz58eEPSadR7t0bx1YeEkwkDGsywjxy8Nj2SCe1ctGsne_uZw6zLmmh-TsWz4qSTfTSz3z4tnu9uV4sHvHy6f1xcL7GqKEmYSc1USyi0lHCoy2reUl41mrEaGoCW05oqophqZMe7WrdKS8MrDhVwIus5nRYXh9xt8O87E5PY-F3IL0VR8kyrYrzZq-CgUsHHGEwntsEOMowCiNjDFgfYIsMWe9iiyZ7y4IlZ69Ym_CX_b_oGfJOD2g</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Gao, Hongbo</creator><creator>Su, Hang</creator><creator>Cai, Yingfeng</creator><creator>Wu, Renfei</creator><creator>Hao, Zhengyuan</creator><creator>Xu, Yongneng</creator><creator>Wu, Wei</creator><creator>Wang, Jianqing</creator><creator>Li, Zhijun</creator><creator>Kan, Zhen</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210701</creationdate><title>Trajectory prediction of cyclist based on dynamic Bayesian network and long short-term memory model at unsignalized intersections</title><author>Gao, Hongbo ; Su, Hang ; Cai, Yingfeng ; Wu, Renfei ; Hao, Zhengyuan ; Xu, Yongneng ; Wu, Wei ; Wang, Jianqing ; Li, Zhijun ; Kan, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-7ad7cb031b30915246b3948d7751811b9353c0c7c8af9f5dbcdae94914190a563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Automation</topic><topic>Bayesian analysis</topic><topic>Collision avoidance</topic><topic>Computer Science</topic><topic>Dynamical systems</topic><topic>Encoders-Decoders</topic><topic>Information Systems and Communication Service</topic><topic>Intelligent vehicles</topic><topic>Kalman filters</topic><topic>Research Paper</topic><topic>Science</topic><topic>Traffic</topic><topic>Traffic intersections</topic><topic>Trajectories</topic><topic>Vehicles</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Hongbo</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><creatorcontrib>Cai, Yingfeng</creatorcontrib><creatorcontrib>Wu, Renfei</creatorcontrib><creatorcontrib>Hao, Zhengyuan</creatorcontrib><creatorcontrib>Xu, Yongneng</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Wang, Jianqing</creatorcontrib><creatorcontrib>Li, Zhijun</creatorcontrib><creatorcontrib>Kan, Zhen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Hongbo</au><au>Su, Hang</au><au>Cai, Yingfeng</au><au>Wu, Renfei</au><au>Hao, Zhengyuan</au><au>Xu, Yongneng</au><au>Wu, Wei</au><au>Wang, Jianqing</au><au>Li, Zhijun</au><au>Kan, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory prediction of cyclist based on dynamic Bayesian network and long short-term memory model at unsignalized intersections</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>64</volume><issue>7</issue><spage>172207</spage><pages>172207-</pages><artnum>172207</artnum><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>Cyclist trajectory prediction is of great significance for both active collision avoidance and path planning of intelligent vehicles. This paper presents a trajectory prediction method for the motion intention of cyclists in real traffic scenarios. This method is based on dynamic Bayesian network (DBN) and long short-term memory (LSTM). The motion intention of cyclists is hard to predict owing to potential large uncertainties. The DBN is used to infer the distribution of cyclists’ intentions at intersections to improve the prediction time. The LSTM with encoder-decoder is used to predict the cyclists’ trajectories to improve the accuracy of prediction. Therefore, the DBN and LSTM are adopted to guarantee prediction accuracy and improve the prediction time. The experiment results are presented to show the effectiveness of the predict strategies.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11432-020-3071-8</doi></addata></record>
fulltext fulltext
identifier ISSN: 1674-733X
ispartof Science China. Information sciences, 2021-07, Vol.64 (7), p.172207, Article 172207
issn 1674-733X
1869-1919
language eng
recordid cdi_proquest_journals_2918647986
source SpringerNature Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Accuracy
Automation
Bayesian analysis
Collision avoidance
Computer Science
Dynamical systems
Encoders-Decoders
Information Systems and Communication Service
Intelligent vehicles
Kalman filters
Research Paper
Science
Traffic
Traffic intersections
Trajectories
Vehicles
Velocity
title Trajectory prediction of cyclist based on dynamic Bayesian network and long short-term memory model at unsignalized intersections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20prediction%20of%20cyclist%20based%20on%20dynamic%20Bayesian%20network%20and%20long%20short-term%20memory%20model%20at%20unsignalized%20intersections&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Gao,%20Hongbo&rft.date=2021-07-01&rft.volume=64&rft.issue=7&rft.spage=172207&rft.pages=172207-&rft.artnum=172207&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-020-3071-8&rft_dat=%3Cproquest_cross%3E2918647986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918647986&rft_id=info:pmid/&rfr_iscdi=true