An Improved MIMO Transmission Diversity Smoothing Method by Constructing Cross-Covariance Matrices
In this letter, we propose a novel preprocessing method to improve the transmission diversity smoothing (TDS) effect. Firstly, by applying different matched-filters to the receiving data, we acquire a series of virtual subarray data with identical array manifold. Then, a batch of cross-covariance ma...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2024, Vol.31, p.416-420 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 420 |
---|---|
container_issue | |
container_start_page | 416 |
container_title | IEEE signal processing letters |
container_volume | 31 |
creator | Fan, Kuan Liu, Xionghou Sun, Chao |
description | In this letter, we propose a novel preprocessing method to improve the transmission diversity smoothing (TDS) effect. Firstly, by applying different matched-filters to the receiving data, we acquire a series of virtual subarray data with identical array manifold. Then, a batch of cross-covariance matrices are constructed with different subarray data. On this basis, multiplying all obtained cross-covariance matrices and auto-covariance matrices by their own conjugate transpose, we get a series of high-order covariance matrices. Afterwards, averaging all these new matrices, we reconstruct a smoothed data covariance matrix for bearing estimation. Compared with the existing TDS based methods, the proposed one makes improvement by introducing cross-covariance matrices to smoothing, rather than further increasing the number of auto-covariance matrices. Theory shows that the proposed scheme well reserves the decorrelation effect of TDS and improves the estimation accuracy by enhancing the array signal to noise ratio. Numerical simulations verify the effectivity and superiority of the modified TDS method with the comparison of root mean square error for bearing estimation of coherent targets. |
doi_str_mv | 10.1109/LSP.2024.3355741 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918647459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918647459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-c06d0ac3862b8ee69544c6f3c55be4dbb303bae2e65eb855c9cda3499d4e879b3</originalsourceid><addsrcrecordid>eNotkEtrwzAQhEVpoWnae4-Cnp3qaUvH4L4CMSkkPQtJVhqF2molJZB_X5vktMMyzO58ADxiNMMYyefl-nNGEGEzSjmvGL4CE8y5KAgt8fWgUYUKKZG4BXcp7RFCAgs-AWbew0X3G8PRtbBZNCu4ibpPnU_Jhx6--KOLyecTXHch5J3vv2Hj8i600JxgHfqU48HmcV3HkFJRh6OOXvfWwUbn6K1L9-Bmq3-Se7jMKfh6e93UH8Vy9b6o58vCEsJyYVHZIm2pKIkRzpWSM2bLLbWcG8daYyiiRjviSu6M4NxK22rKpGyZE5U0dAqezrlDm7-DS1ntwyH2w0lFJBYlqxiXgwudXXb8N7qt-o2-0_GkMFIjSTWQVCNJdSFJ_wEvh2fN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918647459</pqid></control><display><type>article</type><title>An Improved MIMO Transmission Diversity Smoothing Method by Constructing Cross-Covariance Matrices</title><source>IEEE Electronic Library (IEL)</source><creator>Fan, Kuan ; Liu, Xionghou ; Sun, Chao</creator><creatorcontrib>Fan, Kuan ; Liu, Xionghou ; Sun, Chao</creatorcontrib><description>In this letter, we propose a novel preprocessing method to improve the transmission diversity smoothing (TDS) effect. Firstly, by applying different matched-filters to the receiving data, we acquire a series of virtual subarray data with identical array manifold. Then, a batch of cross-covariance matrices are constructed with different subarray data. On this basis, multiplying all obtained cross-covariance matrices and auto-covariance matrices by their own conjugate transpose, we get a series of high-order covariance matrices. Afterwards, averaging all these new matrices, we reconstruct a smoothed data covariance matrix for bearing estimation. Compared with the existing TDS based methods, the proposed one makes improvement by introducing cross-covariance matrices to smoothing, rather than further increasing the number of auto-covariance matrices. Theory shows that the proposed scheme well reserves the decorrelation effect of TDS and improves the estimation accuracy by enhancing the array signal to noise ratio. Numerical simulations verify the effectivity and superiority of the modified TDS method with the comparison of root mean square error for bearing estimation of coherent targets.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2024.3355741</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Arrays ; Covariance matrix ; Signal to noise ratio ; Smoothing</subject><ispartof>IEEE signal processing letters, 2024, Vol.31, p.416-420</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c224t-c06d0ac3862b8ee69544c6f3c55be4dbb303bae2e65eb855c9cda3499d4e879b3</cites><orcidid>0000-0003-4404-9183 ; 0000-0001-6736-6873 ; 0000-0001-7961-1872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Fan, Kuan</creatorcontrib><creatorcontrib>Liu, Xionghou</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><title>An Improved MIMO Transmission Diversity Smoothing Method by Constructing Cross-Covariance Matrices</title><title>IEEE signal processing letters</title><description>In this letter, we propose a novel preprocessing method to improve the transmission diversity smoothing (TDS) effect. Firstly, by applying different matched-filters to the receiving data, we acquire a series of virtual subarray data with identical array manifold. Then, a batch of cross-covariance matrices are constructed with different subarray data. On this basis, multiplying all obtained cross-covariance matrices and auto-covariance matrices by their own conjugate transpose, we get a series of high-order covariance matrices. Afterwards, averaging all these new matrices, we reconstruct a smoothed data covariance matrix for bearing estimation. Compared with the existing TDS based methods, the proposed one makes improvement by introducing cross-covariance matrices to smoothing, rather than further increasing the number of auto-covariance matrices. Theory shows that the proposed scheme well reserves the decorrelation effect of TDS and improves the estimation accuracy by enhancing the array signal to noise ratio. Numerical simulations verify the effectivity and superiority of the modified TDS method with the comparison of root mean square error for bearing estimation of coherent targets.</description><subject>Arrays</subject><subject>Covariance matrix</subject><subject>Signal to noise ratio</subject><subject>Smoothing</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkEtrwzAQhEVpoWnae4-Cnp3qaUvH4L4CMSkkPQtJVhqF2molJZB_X5vktMMyzO58ADxiNMMYyefl-nNGEGEzSjmvGL4CE8y5KAgt8fWgUYUKKZG4BXcp7RFCAgs-AWbew0X3G8PRtbBZNCu4ibpPnU_Jhx6--KOLyecTXHch5J3vv2Hj8i600JxgHfqU48HmcV3HkFJRh6OOXvfWwUbn6K1L9-Bmq3-Se7jMKfh6e93UH8Vy9b6o58vCEsJyYVHZIm2pKIkRzpWSM2bLLbWcG8daYyiiRjviSu6M4NxK22rKpGyZE5U0dAqezrlDm7-DS1ntwyH2w0lFJBYlqxiXgwudXXb8N7qt-o2-0_GkMFIjSTWQVCNJdSFJ_wEvh2fN</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Fan, Kuan</creator><creator>Liu, Xionghou</creator><creator>Sun, Chao</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4404-9183</orcidid><orcidid>https://orcid.org/0000-0001-6736-6873</orcidid><orcidid>https://orcid.org/0000-0001-7961-1872</orcidid></search><sort><creationdate>2024</creationdate><title>An Improved MIMO Transmission Diversity Smoothing Method by Constructing Cross-Covariance Matrices</title><author>Fan, Kuan ; Liu, Xionghou ; Sun, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-c06d0ac3862b8ee69544c6f3c55be4dbb303bae2e65eb855c9cda3499d4e879b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrays</topic><topic>Covariance matrix</topic><topic>Signal to noise ratio</topic><topic>Smoothing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Kuan</creatorcontrib><creatorcontrib>Liu, Xionghou</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Kuan</au><au>Liu, Xionghou</au><au>Sun, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved MIMO Transmission Diversity Smoothing Method by Constructing Cross-Covariance Matrices</atitle><jtitle>IEEE signal processing letters</jtitle><date>2024</date><risdate>2024</risdate><volume>31</volume><spage>416</spage><epage>420</epage><pages>416-420</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><abstract>In this letter, we propose a novel preprocessing method to improve the transmission diversity smoothing (TDS) effect. Firstly, by applying different matched-filters to the receiving data, we acquire a series of virtual subarray data with identical array manifold. Then, a batch of cross-covariance matrices are constructed with different subarray data. On this basis, multiplying all obtained cross-covariance matrices and auto-covariance matrices by their own conjugate transpose, we get a series of high-order covariance matrices. Afterwards, averaging all these new matrices, we reconstruct a smoothed data covariance matrix for bearing estimation. Compared with the existing TDS based methods, the proposed one makes improvement by introducing cross-covariance matrices to smoothing, rather than further increasing the number of auto-covariance matrices. Theory shows that the proposed scheme well reserves the decorrelation effect of TDS and improves the estimation accuracy by enhancing the array signal to noise ratio. Numerical simulations verify the effectivity and superiority of the modified TDS method with the comparison of root mean square error for bearing estimation of coherent targets.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/LSP.2024.3355741</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4404-9183</orcidid><orcidid>https://orcid.org/0000-0001-6736-6873</orcidid><orcidid>https://orcid.org/0000-0001-7961-1872</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2024, Vol.31, p.416-420 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_proquest_journals_2918647459 |
source | IEEE Electronic Library (IEL) |
subjects | Arrays Covariance matrix Signal to noise ratio Smoothing |
title | An Improved MIMO Transmission Diversity Smoothing Method by Constructing Cross-Covariance Matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T04%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20MIMO%20Transmission%20Diversity%20Smoothing%20Method%20by%20Constructing%20Cross-Covariance%20Matrices&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Fan,%20Kuan&rft.date=2024&rft.volume=31&rft.spage=416&rft.epage=420&rft.pages=416-420&rft.issn=1070-9908&rft.eissn=1558-2361&rft_id=info:doi/10.1109/LSP.2024.3355741&rft_dat=%3Cproquest_cross%3E2918647459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918647459&rft_id=info:pmid/&rfr_iscdi=true |