Analyzing Shared Bike Usage Through Graph-Based Spatio-Temporal Modelling
Bike sharing schemes can be used both to improve mobility around busy city routes but also to contribute to the fight against climate change. Optimization of the network in terms of station locations and routes is a focus for researchers, where usage can highlight the precise times at which bike ava...
Gespeichert in:
Veröffentlicht in: | IEEE open journal of intelligent transportation systems 2024-01, Vol.5, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE open journal of intelligent transportation systems |
container_volume | 5 |
creator | Cuong, Dinh Viet Ngo, Vuong M. Cappellari, Paolo Roantree, Mark |
description | Bike sharing schemes can be used both to improve mobility around busy city routes but also to contribute to the fight against climate change. Optimization of the network in terms of station locations and routes is a focus for researchers, where usage can highlight the precise times at which bike availability is high in some areas and low in others. Locations for new stations are important for the expansion of the network, but spatio-temporal pattern analysis is required to accurately identify those locations. In other words, one cannot rely on spatial information nor temporal information in isolation, when making interpretations for the purpose of optimizing or expanding the network. In this research, a solution based on graph networks was developed to model activity in transport networks by exploiting properties and functions specific to graph databases. This generic approach adopts a broad series of analyses, comprising different levels of granularity and complexity, to enable better interpretation of network dynamics at a suitably granular level to help the optimization of transport networks. A large dataset provided by an electric bike company is used to address key research questions in both interpreting activity patterns and supporting network optimization. |
doi_str_mv | 10.1109/OJITS.2024.3350213 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2918647389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10382155</ieee_id><doaj_id>oai_doaj_org_article_737e8ae8afa34af8bd7d6f67a69ffb2c</doaj_id><sourcerecordid>2918647389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-ded3b9c079019b06b2bb9b7b950cf5e936bd99c760e970776e78277a500ec453</originalsourceid><addsrcrecordid>eNpNkU1PwzAMhisEEgj4A4hDJc4dTrLEzREQH0MgDivnyGndraOQkmwH-PUUhhCSJVu2n9eS3yw7ETARAuz50_2smk8kyOlEKQ1SqJ3sQJoSCyyF2v1X72fHKa0AQGohJNiDbHbxRv3HZ_e2yOdLitzkl90L58-JFpxXyxg2i2V-G2lYFpeUxvF8oHUXiopfhxCpzx9Dw30_8kfZXkt94uPffJhVN9fV1V3x8HQ7u7p4KGqlcV003Chva0ALwnowXnpvPXqroW41W2V8Y22NBtgiIBrGUiKSBuB6qtVhNtvKNoFWbojdK8UPF6hzP40QF47iuqt7dqiQSxqjJTWltvQNNqY1SMa2rZf1qHW21RpieN9wWrtV2MTxIclJK0ozRVXacUtut-oYUorc_l0V4L4NcD8GuG8D3K8BI3S6hTpm_geoUgqt1RfzXoD8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918647389</pqid></control><display><type>article</type><title>Analyzing Shared Bike Usage Through Graph-Based Spatio-Temporal Modelling</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cuong, Dinh Viet ; Ngo, Vuong M. ; Cappellari, Paolo ; Roantree, Mark</creator><creatorcontrib>Cuong, Dinh Viet ; Ngo, Vuong M. ; Cappellari, Paolo ; Roantree, Mark</creatorcontrib><description>Bike sharing schemes can be used both to improve mobility around busy city routes but also to contribute to the fight against climate change. Optimization of the network in terms of station locations and routes is a focus for researchers, where usage can highlight the precise times at which bike availability is high in some areas and low in others. Locations for new stations are important for the expansion of the network, but spatio-temporal pattern analysis is required to accurately identify those locations. In other words, one cannot rely on spatial information nor temporal information in isolation, when making interpretations for the purpose of optimizing or expanding the network. In this research, a solution based on graph networks was developed to model activity in transport networks by exploiting properties and functions specific to graph databases. This generic approach adopts a broad series of analyses, comprising different levels of granularity and complexity, to enable better interpretation of network dynamics at a suitably granular level to help the optimization of transport networks. A large dataset provided by an electric bike company is used to address key research questions in both interpreting activity patterns and supporting network optimization.</description><identifier>ISSN: 2687-7813</identifier><identifier>EISSN: 2687-7813</identifier><identifier>DOI: 10.1109/OJITS.2024.3350213</identifier><identifier>CODEN: IOJICL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Complex networks ; Correlation ; Measurement ; Network management systems ; Networks ; Optimization ; Pattern analysis ; Shared transport ; Smart City ; Spatial data ; Spatio-Temporal Graph Analysis ; Transport Networks ; Urban areas</subject><ispartof>IEEE open journal of intelligent transportation systems, 2024-01, Vol.5, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-ded3b9c079019b06b2bb9b7b950cf5e936bd99c760e970776e78277a500ec453</cites><orcidid>0000-0002-8793-0504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10382155$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Cuong, Dinh Viet</creatorcontrib><creatorcontrib>Ngo, Vuong M.</creatorcontrib><creatorcontrib>Cappellari, Paolo</creatorcontrib><creatorcontrib>Roantree, Mark</creatorcontrib><title>Analyzing Shared Bike Usage Through Graph-Based Spatio-Temporal Modelling</title><title>IEEE open journal of intelligent transportation systems</title><addtitle>OJITS</addtitle><description>Bike sharing schemes can be used both to improve mobility around busy city routes but also to contribute to the fight against climate change. Optimization of the network in terms of station locations and routes is a focus for researchers, where usage can highlight the precise times at which bike availability is high in some areas and low in others. Locations for new stations are important for the expansion of the network, but spatio-temporal pattern analysis is required to accurately identify those locations. In other words, one cannot rely on spatial information nor temporal information in isolation, when making interpretations for the purpose of optimizing or expanding the network. In this research, a solution based on graph networks was developed to model activity in transport networks by exploiting properties and functions specific to graph databases. This generic approach adopts a broad series of analyses, comprising different levels of granularity and complexity, to enable better interpretation of network dynamics at a suitably granular level to help the optimization of transport networks. A large dataset provided by an electric bike company is used to address key research questions in both interpreting activity patterns and supporting network optimization.</description><subject>Analytical models</subject><subject>Complex networks</subject><subject>Correlation</subject><subject>Measurement</subject><subject>Network management systems</subject><subject>Networks</subject><subject>Optimization</subject><subject>Pattern analysis</subject><subject>Shared transport</subject><subject>Smart City</subject><subject>Spatial data</subject><subject>Spatio-Temporal Graph Analysis</subject><subject>Transport Networks</subject><subject>Urban areas</subject><issn>2687-7813</issn><issn>2687-7813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1PwzAMhisEEgj4A4hDJc4dTrLEzREQH0MgDivnyGndraOQkmwH-PUUhhCSJVu2n9eS3yw7ETARAuz50_2smk8kyOlEKQ1SqJ3sQJoSCyyF2v1X72fHKa0AQGohJNiDbHbxRv3HZ_e2yOdLitzkl90L58-JFpxXyxg2i2V-G2lYFpeUxvF8oHUXiopfhxCpzx9Dw30_8kfZXkt94uPffJhVN9fV1V3x8HQ7u7p4KGqlcV003Chva0ALwnowXnpvPXqroW41W2V8Y22NBtgiIBrGUiKSBuB6qtVhNtvKNoFWbojdK8UPF6hzP40QF47iuqt7dqiQSxqjJTWltvQNNqY1SMa2rZf1qHW21RpieN9wWrtV2MTxIclJK0ozRVXacUtut-oYUorc_l0V4L4NcD8GuG8D3K8BI3S6hTpm_geoUgqt1RfzXoD8</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Cuong, Dinh Viet</creator><creator>Ngo, Vuong M.</creator><creator>Cappellari, Paolo</creator><creator>Roantree, Mark</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8793-0504</orcidid></search><sort><creationdate>20240101</creationdate><title>Analyzing Shared Bike Usage Through Graph-Based Spatio-Temporal Modelling</title><author>Cuong, Dinh Viet ; Ngo, Vuong M. ; Cappellari, Paolo ; Roantree, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-ded3b9c079019b06b2bb9b7b950cf5e936bd99c760e970776e78277a500ec453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytical models</topic><topic>Complex networks</topic><topic>Correlation</topic><topic>Measurement</topic><topic>Network management systems</topic><topic>Networks</topic><topic>Optimization</topic><topic>Pattern analysis</topic><topic>Shared transport</topic><topic>Smart City</topic><topic>Spatial data</topic><topic>Spatio-Temporal Graph Analysis</topic><topic>Transport Networks</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cuong, Dinh Viet</creatorcontrib><creatorcontrib>Ngo, Vuong M.</creatorcontrib><creatorcontrib>Cappellari, Paolo</creatorcontrib><creatorcontrib>Roantree, Mark</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cuong, Dinh Viet</au><au>Ngo, Vuong M.</au><au>Cappellari, Paolo</au><au>Roantree, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing Shared Bike Usage Through Graph-Based Spatio-Temporal Modelling</atitle><jtitle>IEEE open journal of intelligent transportation systems</jtitle><stitle>OJITS</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>5</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2687-7813</issn><eissn>2687-7813</eissn><coden>IOJICL</coden><abstract>Bike sharing schemes can be used both to improve mobility around busy city routes but also to contribute to the fight against climate change. Optimization of the network in terms of station locations and routes is a focus for researchers, where usage can highlight the precise times at which bike availability is high in some areas and low in others. Locations for new stations are important for the expansion of the network, but spatio-temporal pattern analysis is required to accurately identify those locations. In other words, one cannot rely on spatial information nor temporal information in isolation, when making interpretations for the purpose of optimizing or expanding the network. In this research, a solution based on graph networks was developed to model activity in transport networks by exploiting properties and functions specific to graph databases. This generic approach adopts a broad series of analyses, comprising different levels of granularity and complexity, to enable better interpretation of network dynamics at a suitably granular level to help the optimization of transport networks. A large dataset provided by an electric bike company is used to address key research questions in both interpreting activity patterns and supporting network optimization.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJITS.2024.3350213</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8793-0504</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2687-7813 |
ispartof | IEEE open journal of intelligent transportation systems, 2024-01, Vol.5, p.1-1 |
issn | 2687-7813 2687-7813 |
language | eng |
recordid | cdi_proquest_journals_2918647389 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Analytical models Complex networks Correlation Measurement Network management systems Networks Optimization Pattern analysis Shared transport Smart City Spatial data Spatio-Temporal Graph Analysis Transport Networks Urban areas |
title | Analyzing Shared Bike Usage Through Graph-Based Spatio-Temporal Modelling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20Shared%20Bike%20Usage%20Through%20Graph-Based%20Spatio-Temporal%20Modelling&rft.jtitle=IEEE%20open%20journal%20of%20intelligent%20transportation%20systems&rft.au=Cuong,%20Dinh%20Viet&rft.date=2024-01-01&rft.volume=5&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2687-7813&rft.eissn=2687-7813&rft.coden=IOJICL&rft_id=info:doi/10.1109/OJITS.2024.3350213&rft_dat=%3Cproquest_doaj_%3E2918647389%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918647389&rft_id=info:pmid/&rft_ieee_id=10382155&rft_doaj_id=oai_doaj_org_article_737e8ae8afa34af8bd7d6f67a69ffb2c&rfr_iscdi=true |