Analyzing Shared Bike Usage Through Graph-Based Spatio-Temporal Modelling

Bike sharing schemes can be used both to improve mobility around busy city routes but also to contribute to the fight against climate change. Optimization of the network in terms of station locations and routes is a focus for researchers, where usage can highlight the precise times at which bike ava...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of intelligent transportation systems 2024-01, Vol.5, p.1-1
Hauptverfasser: Cuong, Dinh Viet, Ngo, Vuong M., Cappellari, Paolo, Roantree, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE open journal of intelligent transportation systems
container_volume 5
creator Cuong, Dinh Viet
Ngo, Vuong M.
Cappellari, Paolo
Roantree, Mark
description Bike sharing schemes can be used both to improve mobility around busy city routes but also to contribute to the fight against climate change. Optimization of the network in terms of station locations and routes is a focus for researchers, where usage can highlight the precise times at which bike availability is high in some areas and low in others. Locations for new stations are important for the expansion of the network, but spatio-temporal pattern analysis is required to accurately identify those locations. In other words, one cannot rely on spatial information nor temporal information in isolation, when making interpretations for the purpose of optimizing or expanding the network. In this research, a solution based on graph networks was developed to model activity in transport networks by exploiting properties and functions specific to graph databases. This generic approach adopts a broad series of analyses, comprising different levels of granularity and complexity, to enable better interpretation of network dynamics at a suitably granular level to help the optimization of transport networks. A large dataset provided by an electric bike company is used to address key research questions in both interpreting activity patterns and supporting network optimization.
doi_str_mv 10.1109/OJITS.2024.3350213
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2918647389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10382155</ieee_id><doaj_id>oai_doaj_org_article_737e8ae8afa34af8bd7d6f67a69ffb2c</doaj_id><sourcerecordid>2918647389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-ded3b9c079019b06b2bb9b7b950cf5e936bd99c760e970776e78277a500ec453</originalsourceid><addsrcrecordid>eNpNkU1PwzAMhisEEgj4A4hDJc4dTrLEzREQH0MgDivnyGndraOQkmwH-PUUhhCSJVu2n9eS3yw7ETARAuz50_2smk8kyOlEKQ1SqJ3sQJoSCyyF2v1X72fHKa0AQGohJNiDbHbxRv3HZ_e2yOdLitzkl90L58-JFpxXyxg2i2V-G2lYFpeUxvF8oHUXiopfhxCpzx9Dw30_8kfZXkt94uPffJhVN9fV1V3x8HQ7u7p4KGqlcV003Chva0ALwnowXnpvPXqroW41W2V8Y22NBtgiIBrGUiKSBuB6qtVhNtvKNoFWbojdK8UPF6hzP40QF47iuqt7dqiQSxqjJTWltvQNNqY1SMa2rZf1qHW21RpieN9wWrtV2MTxIclJK0ozRVXacUtut-oYUorc_l0V4L4NcD8GuG8D3K8BI3S6hTpm_geoUgqt1RfzXoD8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918647389</pqid></control><display><type>article</type><title>Analyzing Shared Bike Usage Through Graph-Based Spatio-Temporal Modelling</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cuong, Dinh Viet ; Ngo, Vuong M. ; Cappellari, Paolo ; Roantree, Mark</creator><creatorcontrib>Cuong, Dinh Viet ; Ngo, Vuong M. ; Cappellari, Paolo ; Roantree, Mark</creatorcontrib><description>Bike sharing schemes can be used both to improve mobility around busy city routes but also to contribute to the fight against climate change. Optimization of the network in terms of station locations and routes is a focus for researchers, where usage can highlight the precise times at which bike availability is high in some areas and low in others. Locations for new stations are important for the expansion of the network, but spatio-temporal pattern analysis is required to accurately identify those locations. In other words, one cannot rely on spatial information nor temporal information in isolation, when making interpretations for the purpose of optimizing or expanding the network. In this research, a solution based on graph networks was developed to model activity in transport networks by exploiting properties and functions specific to graph databases. This generic approach adopts a broad series of analyses, comprising different levels of granularity and complexity, to enable better interpretation of network dynamics at a suitably granular level to help the optimization of transport networks. A large dataset provided by an electric bike company is used to address key research questions in both interpreting activity patterns and supporting network optimization.</description><identifier>ISSN: 2687-7813</identifier><identifier>EISSN: 2687-7813</identifier><identifier>DOI: 10.1109/OJITS.2024.3350213</identifier><identifier>CODEN: IOJICL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Complex networks ; Correlation ; Measurement ; Network management systems ; Networks ; Optimization ; Pattern analysis ; Shared transport ; Smart City ; Spatial data ; Spatio-Temporal Graph Analysis ; Transport Networks ; Urban areas</subject><ispartof>IEEE open journal of intelligent transportation systems, 2024-01, Vol.5, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-ded3b9c079019b06b2bb9b7b950cf5e936bd99c760e970776e78277a500ec453</cites><orcidid>0000-0002-8793-0504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10382155$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Cuong, Dinh Viet</creatorcontrib><creatorcontrib>Ngo, Vuong M.</creatorcontrib><creatorcontrib>Cappellari, Paolo</creatorcontrib><creatorcontrib>Roantree, Mark</creatorcontrib><title>Analyzing Shared Bike Usage Through Graph-Based Spatio-Temporal Modelling</title><title>IEEE open journal of intelligent transportation systems</title><addtitle>OJITS</addtitle><description>Bike sharing schemes can be used both to improve mobility around busy city routes but also to contribute to the fight against climate change. Optimization of the network in terms of station locations and routes is a focus for researchers, where usage can highlight the precise times at which bike availability is high in some areas and low in others. Locations for new stations are important for the expansion of the network, but spatio-temporal pattern analysis is required to accurately identify those locations. In other words, one cannot rely on spatial information nor temporal information in isolation, when making interpretations for the purpose of optimizing or expanding the network. In this research, a solution based on graph networks was developed to model activity in transport networks by exploiting properties and functions specific to graph databases. This generic approach adopts a broad series of analyses, comprising different levels of granularity and complexity, to enable better interpretation of network dynamics at a suitably granular level to help the optimization of transport networks. A large dataset provided by an electric bike company is used to address key research questions in both interpreting activity patterns and supporting network optimization.</description><subject>Analytical models</subject><subject>Complex networks</subject><subject>Correlation</subject><subject>Measurement</subject><subject>Network management systems</subject><subject>Networks</subject><subject>Optimization</subject><subject>Pattern analysis</subject><subject>Shared transport</subject><subject>Smart City</subject><subject>Spatial data</subject><subject>Spatio-Temporal Graph Analysis</subject><subject>Transport Networks</subject><subject>Urban areas</subject><issn>2687-7813</issn><issn>2687-7813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1PwzAMhisEEgj4A4hDJc4dTrLEzREQH0MgDivnyGndraOQkmwH-PUUhhCSJVu2n9eS3yw7ETARAuz50_2smk8kyOlEKQ1SqJ3sQJoSCyyF2v1X72fHKa0AQGohJNiDbHbxRv3HZ_e2yOdLitzkl90L58-JFpxXyxg2i2V-G2lYFpeUxvF8oHUXiopfhxCpzx9Dw30_8kfZXkt94uPffJhVN9fV1V3x8HQ7u7p4KGqlcV003Chva0ALwnowXnpvPXqroW41W2V8Y22NBtgiIBrGUiKSBuB6qtVhNtvKNoFWbojdK8UPF6hzP40QF47iuqt7dqiQSxqjJTWltvQNNqY1SMa2rZf1qHW21RpieN9wWrtV2MTxIclJK0ozRVXacUtut-oYUorc_l0V4L4NcD8GuG8D3K8BI3S6hTpm_geoUgqt1RfzXoD8</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Cuong, Dinh Viet</creator><creator>Ngo, Vuong M.</creator><creator>Cappellari, Paolo</creator><creator>Roantree, Mark</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8793-0504</orcidid></search><sort><creationdate>20240101</creationdate><title>Analyzing Shared Bike Usage Through Graph-Based Spatio-Temporal Modelling</title><author>Cuong, Dinh Viet ; Ngo, Vuong M. ; Cappellari, Paolo ; Roantree, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-ded3b9c079019b06b2bb9b7b950cf5e936bd99c760e970776e78277a500ec453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytical models</topic><topic>Complex networks</topic><topic>Correlation</topic><topic>Measurement</topic><topic>Network management systems</topic><topic>Networks</topic><topic>Optimization</topic><topic>Pattern analysis</topic><topic>Shared transport</topic><topic>Smart City</topic><topic>Spatial data</topic><topic>Spatio-Temporal Graph Analysis</topic><topic>Transport Networks</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cuong, Dinh Viet</creatorcontrib><creatorcontrib>Ngo, Vuong M.</creatorcontrib><creatorcontrib>Cappellari, Paolo</creatorcontrib><creatorcontrib>Roantree, Mark</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cuong, Dinh Viet</au><au>Ngo, Vuong M.</au><au>Cappellari, Paolo</au><au>Roantree, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing Shared Bike Usage Through Graph-Based Spatio-Temporal Modelling</atitle><jtitle>IEEE open journal of intelligent transportation systems</jtitle><stitle>OJITS</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>5</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2687-7813</issn><eissn>2687-7813</eissn><coden>IOJICL</coden><abstract>Bike sharing schemes can be used both to improve mobility around busy city routes but also to contribute to the fight against climate change. Optimization of the network in terms of station locations and routes is a focus for researchers, where usage can highlight the precise times at which bike availability is high in some areas and low in others. Locations for new stations are important for the expansion of the network, but spatio-temporal pattern analysis is required to accurately identify those locations. In other words, one cannot rely on spatial information nor temporal information in isolation, when making interpretations for the purpose of optimizing or expanding the network. In this research, a solution based on graph networks was developed to model activity in transport networks by exploiting properties and functions specific to graph databases. This generic approach adopts a broad series of analyses, comprising different levels of granularity and complexity, to enable better interpretation of network dynamics at a suitably granular level to help the optimization of transport networks. A large dataset provided by an electric bike company is used to address key research questions in both interpreting activity patterns and supporting network optimization.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJITS.2024.3350213</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8793-0504</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2687-7813
ispartof IEEE open journal of intelligent transportation systems, 2024-01, Vol.5, p.1-1
issn 2687-7813
2687-7813
language eng
recordid cdi_proquest_journals_2918647389
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Analytical models
Complex networks
Correlation
Measurement
Network management systems
Networks
Optimization
Pattern analysis
Shared transport
Smart City
Spatial data
Spatio-Temporal Graph Analysis
Transport Networks
Urban areas
title Analyzing Shared Bike Usage Through Graph-Based Spatio-Temporal Modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20Shared%20Bike%20Usage%20Through%20Graph-Based%20Spatio-Temporal%20Modelling&rft.jtitle=IEEE%20open%20journal%20of%20intelligent%20transportation%20systems&rft.au=Cuong,%20Dinh%20Viet&rft.date=2024-01-01&rft.volume=5&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2687-7813&rft.eissn=2687-7813&rft.coden=IOJICL&rft_id=info:doi/10.1109/OJITS.2024.3350213&rft_dat=%3Cproquest_doaj_%3E2918647389%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918647389&rft_id=info:pmid/&rft_ieee_id=10382155&rft_doaj_id=oai_doaj_org_article_737e8ae8afa34af8bd7d6f67a69ffb2c&rfr_iscdi=true