Editorial

Machine learning, artificial intelligence, data science, cloud computing, information technology, digital twins, Internet of Things, etc., are emerging trends to deal with complex and challenging problems in a variety of business, scientific, and social domains. The paper “Improving the Analytic Hie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Programming and computer software 2021-12, Vol.47 (8), p.555-557
Hauptverfasser: Tchernykh, A, Ramírez, Reyes Juárez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 557
container_issue 8
container_start_page 555
container_title Programming and computer software
container_volume 47
creator Tchernykh, A
Ramírez, Reyes Juárez
description Machine learning, artificial intelligence, data science, cloud computing, information technology, digital twins, Internet of Things, etc., are emerging trends to deal with complex and challenging problems in a variety of business, scientific, and social domains. The paper “Improving the Analytic Hierarchy Process (AHP) for requirements prioritization using Evolutionary Computing” presents an improved AHP using evolutionary computing techniques to optimize requirements prioritization. [...]the guest editors are thankful to all authors who submitted high-quality manuscripts and our reviewers for their efforts in reviewing the contributions.
doi_str_mv 10.1134/S0361768821080247
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2918644924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918644924</sourcerecordid><originalsourceid>FETCH-proquest_journals_29186449243</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOFDLBitD-DsHL27HOl1loq77qVghZZiNGnfXws-gNM_fD_AjvBA5OR4Reep8KpMqMhSLMCQR7WOPS3BzGxnX8E6pR6REEUMmOrejSF2zZBD9miG1G5_3cD-XN1OF_uK4T21aaz7MMXnl2ouSb1IyeL-uz54vir6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918644924</pqid></control><display><type>article</type><title>Editorial</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Tchernykh, A ; Ramírez, Reyes Juárez</creator><creatorcontrib>Tchernykh, A ; Ramírez, Reyes Juárez</creatorcontrib><description>Machine learning, artificial intelligence, data science, cloud computing, information technology, digital twins, Internet of Things, etc., are emerging trends to deal with complex and challenging problems in a variety of business, scientific, and social domains. The paper “Improving the Analytic Hierarchy Process (AHP) for requirements prioritization using Evolutionary Computing” presents an improved AHP using evolutionary computing techniques to optimize requirements prioritization. [...]the guest editors are thankful to all authors who submitted high-quality manuscripts and our reviewers for their efforts in reviewing the contributions.</description><identifier>ISSN: 0361-7688</identifier><identifier>EISSN: 1608-3261</identifier><identifier>DOI: 10.1134/S0361768821080247</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Analytic hierarchy process ; Approximation ; Artificial intelligence ; Automation ; Case studies ; Cloud computing ; Data base management systems ; Data mining ; Decision making ; Digital twins ; Editors ; Genetic algorithms ; Internet of Things ; Learning curves ; Machine learning ; Maximum likelihood method ; Neural networks ; Number systems ; Personality ; Software ; Surveillance ; Trends ; Unmanned aerial vehicles</subject><ispartof>Programming and computer software, 2021-12, Vol.47 (8), p.555-557</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 0361-7688, Programming and Computer Software, 2021, Vol. 47, No. 8, pp. 555–557. © Pleiades Publishing, Ltd., 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918644924?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,43781</link.rule.ids></links><search><creatorcontrib>Tchernykh, A</creatorcontrib><creatorcontrib>Ramírez, Reyes Juárez</creatorcontrib><title>Editorial</title><title>Programming and computer software</title><description>Machine learning, artificial intelligence, data science, cloud computing, information technology, digital twins, Internet of Things, etc., are emerging trends to deal with complex and challenging problems in a variety of business, scientific, and social domains. The paper “Improving the Analytic Hierarchy Process (AHP) for requirements prioritization using Evolutionary Computing” presents an improved AHP using evolutionary computing techniques to optimize requirements prioritization. [...]the guest editors are thankful to all authors who submitted high-quality manuscripts and our reviewers for their efforts in reviewing the contributions.</description><subject>Analytic hierarchy process</subject><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Case studies</subject><subject>Cloud computing</subject><subject>Data base management systems</subject><subject>Data mining</subject><subject>Decision making</subject><subject>Digital twins</subject><subject>Editors</subject><subject>Genetic algorithms</subject><subject>Internet of Things</subject><subject>Learning curves</subject><subject>Machine learning</subject><subject>Maximum likelihood method</subject><subject>Neural networks</subject><subject>Number systems</subject><subject>Personality</subject><subject>Software</subject><subject>Surveillance</subject><subject>Trends</subject><subject>Unmanned aerial vehicles</subject><issn>0361-7688</issn><issn>1608-3261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAQgOFDLBitD-DsHL27HOl1loq77qVghZZiNGnfXws-gNM_fD_AjvBA5OR4Reep8KpMqMhSLMCQR7WOPS3BzGxnX8E6pR6REEUMmOrejSF2zZBD9miG1G5_3cD-XN1OF_uK4T21aaz7MMXnl2ouSb1IyeL-uz54vir6</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Tchernykh, A</creator><creator>Ramírez, Reyes Juárez</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20211201</creationdate><title>Editorial</title><author>Tchernykh, A ; Ramírez, Reyes Juárez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29186449243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytic hierarchy process</topic><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Case studies</topic><topic>Cloud computing</topic><topic>Data base management systems</topic><topic>Data mining</topic><topic>Decision making</topic><topic>Digital twins</topic><topic>Editors</topic><topic>Genetic algorithms</topic><topic>Internet of Things</topic><topic>Learning curves</topic><topic>Machine learning</topic><topic>Maximum likelihood method</topic><topic>Neural networks</topic><topic>Number systems</topic><topic>Personality</topic><topic>Software</topic><topic>Surveillance</topic><topic>Trends</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tchernykh, A</creatorcontrib><creatorcontrib>Ramírez, Reyes Juárez</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Programming and computer software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tchernykh, A</au><au>Ramírez, Reyes Juárez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Editorial</atitle><jtitle>Programming and computer software</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>47</volume><issue>8</issue><spage>555</spage><epage>557</epage><pages>555-557</pages><issn>0361-7688</issn><eissn>1608-3261</eissn><abstract>Machine learning, artificial intelligence, data science, cloud computing, information technology, digital twins, Internet of Things, etc., are emerging trends to deal with complex and challenging problems in a variety of business, scientific, and social domains. The paper “Improving the Analytic Hierarchy Process (AHP) for requirements prioritization using Evolutionary Computing” presents an improved AHP using evolutionary computing techniques to optimize requirements prioritization. [...]the guest editors are thankful to all authors who submitted high-quality manuscripts and our reviewers for their efforts in reviewing the contributions.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1134/S0361768821080247</doi></addata></record>
fulltext fulltext
identifier ISSN: 0361-7688
ispartof Programming and computer software, 2021-12, Vol.47 (8), p.555-557
issn 0361-7688
1608-3261
language eng
recordid cdi_proquest_journals_2918644924
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Analytic hierarchy process
Approximation
Artificial intelligence
Automation
Case studies
Cloud computing
Data base management systems
Data mining
Decision making
Digital twins
Editors
Genetic algorithms
Internet of Things
Learning curves
Machine learning
Maximum likelihood method
Neural networks
Number systems
Personality
Software
Surveillance
Trends
Unmanned aerial vehicles
title Editorial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Editorial&rft.jtitle=Programming%20and%20computer%20software&rft.au=Tchernykh,%20A&rft.date=2021-12-01&rft.volume=47&rft.issue=8&rft.spage=555&rft.epage=557&rft.pages=555-557&rft.issn=0361-7688&rft.eissn=1608-3261&rft_id=info:doi/10.1134/S0361768821080247&rft_dat=%3Cproquest%3E2918644924%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918644924&rft_id=info:pmid/&rfr_iscdi=true