Editorial
Machine learning, artificial intelligence, data science, cloud computing, information technology, digital twins, Internet of Things, etc., are emerging trends to deal with complex and challenging problems in a variety of business, scientific, and social domains. The paper “Improving the Analytic Hie...
Gespeichert in:
Veröffentlicht in: | Programming and computer software 2021-12, Vol.47 (8), p.555-557 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 557 |
---|---|
container_issue | 8 |
container_start_page | 555 |
container_title | Programming and computer software |
container_volume | 47 |
creator | Tchernykh, A Ramírez, Reyes Juárez |
description | Machine learning, artificial intelligence, data science, cloud computing, information technology, digital twins, Internet of Things, etc., are emerging trends to deal with complex and challenging problems in a variety of business, scientific, and social domains. The paper “Improving the Analytic Hierarchy Process (AHP) for requirements prioritization using Evolutionary Computing” presents an improved AHP using evolutionary computing techniques to optimize requirements prioritization. [...]the guest editors are thankful to all authors who submitted high-quality manuscripts and our reviewers for their efforts in reviewing the contributions. |
doi_str_mv | 10.1134/S0361768821080247 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2918644924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918644924</sourcerecordid><originalsourceid>FETCH-proquest_journals_29186449243</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOFDLBitD-DsHL27HOl1loq77qVghZZiNGnfXws-gNM_fD_AjvBA5OR4Reep8KpMqMhSLMCQR7WOPS3BzGxnX8E6pR6REEUMmOrejSF2zZBD9miG1G5_3cD-XN1OF_uK4T21aaz7MMXnl2ouSb1IyeL-uz54vir6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918644924</pqid></control><display><type>article</type><title>Editorial</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Tchernykh, A ; Ramírez, Reyes Juárez</creator><creatorcontrib>Tchernykh, A ; Ramírez, Reyes Juárez</creatorcontrib><description>Machine learning, artificial intelligence, data science, cloud computing, information technology, digital twins, Internet of Things, etc., are emerging trends to deal with complex and challenging problems in a variety of business, scientific, and social domains. The paper “Improving the Analytic Hierarchy Process (AHP) for requirements prioritization using Evolutionary Computing” presents an improved AHP using evolutionary computing techniques to optimize requirements prioritization. [...]the guest editors are thankful to all authors who submitted high-quality manuscripts and our reviewers for their efforts in reviewing the contributions.</description><identifier>ISSN: 0361-7688</identifier><identifier>EISSN: 1608-3261</identifier><identifier>DOI: 10.1134/S0361768821080247</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Analytic hierarchy process ; Approximation ; Artificial intelligence ; Automation ; Case studies ; Cloud computing ; Data base management systems ; Data mining ; Decision making ; Digital twins ; Editors ; Genetic algorithms ; Internet of Things ; Learning curves ; Machine learning ; Maximum likelihood method ; Neural networks ; Number systems ; Personality ; Software ; Surveillance ; Trends ; Unmanned aerial vehicles</subject><ispartof>Programming and computer software, 2021-12, Vol.47 (8), p.555-557</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 0361-7688, Programming and Computer Software, 2021, Vol. 47, No. 8, pp. 555–557. © Pleiades Publishing, Ltd., 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918644924?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,43781</link.rule.ids></links><search><creatorcontrib>Tchernykh, A</creatorcontrib><creatorcontrib>Ramírez, Reyes Juárez</creatorcontrib><title>Editorial</title><title>Programming and computer software</title><description>Machine learning, artificial intelligence, data science, cloud computing, information technology, digital twins, Internet of Things, etc., are emerging trends to deal with complex and challenging problems in a variety of business, scientific, and social domains. The paper “Improving the Analytic Hierarchy Process (AHP) for requirements prioritization using Evolutionary Computing” presents an improved AHP using evolutionary computing techniques to optimize requirements prioritization. [...]the guest editors are thankful to all authors who submitted high-quality manuscripts and our reviewers for their efforts in reviewing the contributions.</description><subject>Analytic hierarchy process</subject><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Case studies</subject><subject>Cloud computing</subject><subject>Data base management systems</subject><subject>Data mining</subject><subject>Decision making</subject><subject>Digital twins</subject><subject>Editors</subject><subject>Genetic algorithms</subject><subject>Internet of Things</subject><subject>Learning curves</subject><subject>Machine learning</subject><subject>Maximum likelihood method</subject><subject>Neural networks</subject><subject>Number systems</subject><subject>Personality</subject><subject>Software</subject><subject>Surveillance</subject><subject>Trends</subject><subject>Unmanned aerial vehicles</subject><issn>0361-7688</issn><issn>1608-3261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAQgOFDLBitD-DsHL27HOl1loq77qVghZZiNGnfXws-gNM_fD_AjvBA5OR4Reep8KpMqMhSLMCQR7WOPS3BzGxnX8E6pR6REEUMmOrejSF2zZBD9miG1G5_3cD-XN1OF_uK4T21aaz7MMXnl2ouSb1IyeL-uz54vir6</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Tchernykh, A</creator><creator>Ramírez, Reyes Juárez</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20211201</creationdate><title>Editorial</title><author>Tchernykh, A ; Ramírez, Reyes Juárez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29186449243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytic hierarchy process</topic><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Case studies</topic><topic>Cloud computing</topic><topic>Data base management systems</topic><topic>Data mining</topic><topic>Decision making</topic><topic>Digital twins</topic><topic>Editors</topic><topic>Genetic algorithms</topic><topic>Internet of Things</topic><topic>Learning curves</topic><topic>Machine learning</topic><topic>Maximum likelihood method</topic><topic>Neural networks</topic><topic>Number systems</topic><topic>Personality</topic><topic>Software</topic><topic>Surveillance</topic><topic>Trends</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tchernykh, A</creatorcontrib><creatorcontrib>Ramírez, Reyes Juárez</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Programming and computer software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tchernykh, A</au><au>Ramírez, Reyes Juárez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Editorial</atitle><jtitle>Programming and computer software</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>47</volume><issue>8</issue><spage>555</spage><epage>557</epage><pages>555-557</pages><issn>0361-7688</issn><eissn>1608-3261</eissn><abstract>Machine learning, artificial intelligence, data science, cloud computing, information technology, digital twins, Internet of Things, etc., are emerging trends to deal with complex and challenging problems in a variety of business, scientific, and social domains. The paper “Improving the Analytic Hierarchy Process (AHP) for requirements prioritization using Evolutionary Computing” presents an improved AHP using evolutionary computing techniques to optimize requirements prioritization. [...]the guest editors are thankful to all authors who submitted high-quality manuscripts and our reviewers for their efforts in reviewing the contributions.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1134/S0361768821080247</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-7688 |
ispartof | Programming and computer software, 2021-12, Vol.47 (8), p.555-557 |
issn | 0361-7688 1608-3261 |
language | eng |
recordid | cdi_proquest_journals_2918644924 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Analytic hierarchy process Approximation Artificial intelligence Automation Case studies Cloud computing Data base management systems Data mining Decision making Digital twins Editors Genetic algorithms Internet of Things Learning curves Machine learning Maximum likelihood method Neural networks Number systems Personality Software Surveillance Trends Unmanned aerial vehicles |
title | Editorial |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Editorial&rft.jtitle=Programming%20and%20computer%20software&rft.au=Tchernykh,%20A&rft.date=2021-12-01&rft.volume=47&rft.issue=8&rft.spage=555&rft.epage=557&rft.pages=555-557&rft.issn=0361-7688&rft.eissn=1608-3261&rft_id=info:doi/10.1134/S0361768821080247&rft_dat=%3Cproquest%3E2918644924%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918644924&rft_id=info:pmid/&rfr_iscdi=true |