InStereo2K: a large real dataset for stereo matching in indoor scenes
Deep neural networks have shown great success in stereo matching in recent years. On the KITTI datasets, most top performing methods are based on neural networks. However, on the Middlebury datasets, these methods usually do not perform well. The KITTI datasets are collected in outdoor scenes while...
Gespeichert in:
Veröffentlicht in: | Science China. Information sciences 2020-11, Vol.63 (11), p.212101, Article 212101 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 212101 |
container_title | Science China. Information sciences |
container_volume | 63 |
creator | Bao, Wei Wang, Wei Xu, Yuhua Guo, Yulan Hong, Siyu Zhang, Xiaohu |
description | Deep neural networks have shown great success in stereo matching in recent years. On the KITTI datasets, most top performing methods are based on neural networks. However, on the Middlebury datasets, these methods usually do not perform well. The KITTI datasets are collected in outdoor scenes while the Middlebury datasets are collected in indoor scenes. It is commonly believed that the community still lacks a large labelled dataset for stereo matching in indoor scenes. In this paper, we introduce a new stereo dataset called InStereo2K. It contains 2050 pairs of stereo images with highly accurate groundtruth disparity maps, including 2000 pairs for training and 50 pairs for test. Experimental results show that our dataset can significantly improve the performance of several latest networks (including StereoNet and PSMNet) on the Middlebury 2014 dataset. The large scale, high accuracy and rich diversity of the proposed InStereo2K dataset provide new opportunities to researchers in the area of stereo matching and beyond. It also takes end-to-end stereo matching methods a step towards practical applications. |
doi_str_mv | 10.1007/s11432-019-2803-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918639509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918639509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c20b58586830ddb926fc67a89c1b3e491f764ec17de16339fe9ac6b16baf8ad33</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWGofwFvAczST7GYTb1KqFgseVPAWstlJbWl3a7KF-vamruDJYWAG5v9nmI-QS-DXwHl1kwAKKRgHw4Tmkh1OyAi0MgwMmNPcq6pglZTv52SS0prnkJKLSo_IbN6-9BixE0-31NGNi0ukEd2GNq53CXsaukjTj4RuXe8_Vu2SrtqcTXeceGwxXZCz4DYJJ791TN7uZ6_TR7Z4fphP7xbMy9L0zAtel7rUSkveNLURKnhVOW081BILA6FSBXqoGgQlpQlonFc1qNoF7Ropx-Rq2LuL3eceU2_X3T62-aQVJn8sTclNVsGg8rFLKWKwu7jauvhlgdsjMDsAsxmYPQKzh-wRgydlbbvE-Lf5f9M3CvZtcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918639509</pqid></control><display><type>article</type><title>InStereo2K: a large real dataset for stereo matching in indoor scenes</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Bao, Wei ; Wang, Wei ; Xu, Yuhua ; Guo, Yulan ; Hong, Siyu ; Zhang, Xiaohu</creator><creatorcontrib>Bao, Wei ; Wang, Wei ; Xu, Yuhua ; Guo, Yulan ; Hong, Siyu ; Zhang, Xiaohu</creatorcontrib><description>Deep neural networks have shown great success in stereo matching in recent years. On the KITTI datasets, most top performing methods are based on neural networks. However, on the Middlebury datasets, these methods usually do not perform well. The KITTI datasets are collected in outdoor scenes while the Middlebury datasets are collected in indoor scenes. It is commonly believed that the community still lacks a large labelled dataset for stereo matching in indoor scenes. In this paper, we introduce a new stereo dataset called InStereo2K. It contains 2050 pairs of stereo images with highly accurate groundtruth disparity maps, including 2000 pairs for training and 50 pairs for test. Experimental results show that our dataset can significantly improve the performance of several latest networks (including StereoNet and PSMNet) on the Middlebury 2014 dataset. The large scale, high accuracy and rich diversity of the proposed InStereo2K dataset provide new opportunities to researchers in the area of stereo matching and beyond. It also takes end-to-end stereo matching methods a step towards practical applications.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-019-2803-x</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Artificial neural networks ; Computer Science ; Datasets ; Information Systems and Communication Service ; Matching ; Neural networks ; Research Paper</subject><ispartof>Science China. Information sciences, 2020-11, Vol.63 (11), p.212101, Article 212101</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-c20b58586830ddb926fc67a89c1b3e491f764ec17de16339fe9ac6b16baf8ad33</citedby><cites>FETCH-LOGICAL-c359t-c20b58586830ddb926fc67a89c1b3e491f764ec17de16339fe9ac6b16baf8ad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11432-019-2803-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918639509?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Bao, Wei</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Xu, Yuhua</creatorcontrib><creatorcontrib>Guo, Yulan</creatorcontrib><creatorcontrib>Hong, Siyu</creatorcontrib><creatorcontrib>Zhang, Xiaohu</creatorcontrib><title>InStereo2K: a large real dataset for stereo matching in indoor scenes</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><description>Deep neural networks have shown great success in stereo matching in recent years. On the KITTI datasets, most top performing methods are based on neural networks. However, on the Middlebury datasets, these methods usually do not perform well. The KITTI datasets are collected in outdoor scenes while the Middlebury datasets are collected in indoor scenes. It is commonly believed that the community still lacks a large labelled dataset for stereo matching in indoor scenes. In this paper, we introduce a new stereo dataset called InStereo2K. It contains 2050 pairs of stereo images with highly accurate groundtruth disparity maps, including 2000 pairs for training and 50 pairs for test. Experimental results show that our dataset can significantly improve the performance of several latest networks (including StereoNet and PSMNet) on the Middlebury 2014 dataset. The large scale, high accuracy and rich diversity of the proposed InStereo2K dataset provide new opportunities to researchers in the area of stereo matching and beyond. It also takes end-to-end stereo matching methods a step towards practical applications.</description><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Information Systems and Communication Service</subject><subject>Matching</subject><subject>Neural networks</subject><subject>Research Paper</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKAzEQhoMoWGofwFvAczST7GYTb1KqFgseVPAWstlJbWl3a7KF-vamruDJYWAG5v9nmI-QS-DXwHl1kwAKKRgHw4Tmkh1OyAi0MgwMmNPcq6pglZTv52SS0prnkJKLSo_IbN6-9BixE0-31NGNi0ukEd2GNq53CXsaukjTj4RuXe8_Vu2SrtqcTXeceGwxXZCz4DYJJ791TN7uZ6_TR7Z4fphP7xbMy9L0zAtel7rUSkveNLURKnhVOW081BILA6FSBXqoGgQlpQlonFc1qNoF7Ropx-Rq2LuL3eceU2_X3T62-aQVJn8sTclNVsGg8rFLKWKwu7jauvhlgdsjMDsAsxmYPQKzh-wRgydlbbvE-Lf5f9M3CvZtcA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Bao, Wei</creator><creator>Wang, Wei</creator><creator>Xu, Yuhua</creator><creator>Guo, Yulan</creator><creator>Hong, Siyu</creator><creator>Zhang, Xiaohu</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20201101</creationdate><title>InStereo2K: a large real dataset for stereo matching in indoor scenes</title><author>Bao, Wei ; Wang, Wei ; Xu, Yuhua ; Guo, Yulan ; Hong, Siyu ; Zhang, Xiaohu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c20b58586830ddb926fc67a89c1b3e491f764ec17de16339fe9ac6b16baf8ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Information Systems and Communication Service</topic><topic>Matching</topic><topic>Neural networks</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Wei</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Xu, Yuhua</creatorcontrib><creatorcontrib>Guo, Yulan</creatorcontrib><creatorcontrib>Hong, Siyu</creatorcontrib><creatorcontrib>Zhang, Xiaohu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Wei</au><au>Wang, Wei</au><au>Xu, Yuhua</au><au>Guo, Yulan</au><au>Hong, Siyu</au><au>Zhang, Xiaohu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>InStereo2K: a large real dataset for stereo matching in indoor scenes</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>63</volume><issue>11</issue><spage>212101</spage><pages>212101-</pages><artnum>212101</artnum><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>Deep neural networks have shown great success in stereo matching in recent years. On the KITTI datasets, most top performing methods are based on neural networks. However, on the Middlebury datasets, these methods usually do not perform well. The KITTI datasets are collected in outdoor scenes while the Middlebury datasets are collected in indoor scenes. It is commonly believed that the community still lacks a large labelled dataset for stereo matching in indoor scenes. In this paper, we introduce a new stereo dataset called InStereo2K. It contains 2050 pairs of stereo images with highly accurate groundtruth disparity maps, including 2000 pairs for training and 50 pairs for test. Experimental results show that our dataset can significantly improve the performance of several latest networks (including StereoNet and PSMNet) on the Middlebury 2014 dataset. The large scale, high accuracy and rich diversity of the proposed InStereo2K dataset provide new opportunities to researchers in the area of stereo matching and beyond. It also takes end-to-end stereo matching methods a step towards practical applications.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11432-019-2803-x</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-733X |
ispartof | Science China. Information sciences, 2020-11, Vol.63 (11), p.212101, Article 212101 |
issn | 1674-733X 1869-1919 |
language | eng |
recordid | cdi_proquest_journals_2918639509 |
source | ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Artificial neural networks Computer Science Datasets Information Systems and Communication Service Matching Neural networks Research Paper |
title | InStereo2K: a large real dataset for stereo matching in indoor scenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=InStereo2K:%20a%20large%20real%20dataset%20for%20stereo%20matching%20in%20indoor%20scenes&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Bao,%20Wei&rft.date=2020-11-01&rft.volume=63&rft.issue=11&rft.spage=212101&rft.pages=212101-&rft.artnum=212101&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-019-2803-x&rft_dat=%3Cproquest_cross%3E2918639509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918639509&rft_id=info:pmid/&rfr_iscdi=true |