A robust synergetic controller for Quadrotor obstacle avoidance using Bézier curve versus B-spline trajectory generation

This paper deals with a robust synergetic controller for planning an optimal trajectory and a guidance of the Quadrotor in complex environment. The Bézier curve method is introduced to plan the path of the Quadrotor, where the control points will be generated automatically to avoid the collusion wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intelligent service robotics 2022-03, Vol.15 (1), p.143-152
Hauptverfasser: kheireddine, Chara, Yassine, Abdessemed, Fawzi, Srairi, Khalil, Mokhtari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue 1
container_start_page 143
container_title Intelligent service robotics
container_volume 15
creator kheireddine, Chara
Yassine, Abdessemed
Fawzi, Srairi
Khalil, Mokhtari
description This paper deals with a robust synergetic controller for planning an optimal trajectory and a guidance of the Quadrotor in complex environment. The Bézier curve method is introduced to plan the path of the Quadrotor, where the control points will be generated automatically to avoid the collusion with anything, keeping a high accuracy to detect the obstacles. In addition, the B-spline curves are generated in order to compare the proposed approach performances. Furthermore, a synergetic controller is synthesized for the attitude control of the Quadrotor, and the stability analysis of the proposed method is formally established. Numerical simulations are presented in order to show the effectiveness of the proposed controller. Experimental validation through a Quadrotor test bench is given in order to confirm the reported theoretical results.
doi_str_mv 10.1007/s11370-021-00408-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918628385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918628385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-ffa2003f6dc6f858ebe0aaeefeb752b22bf88abbfc8db20b0a6b7237cc185ab13</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYsoOI6-gKuA6-hNOm3jcmbwDwQRdB2S9KZ0qM2YpAP1jXwOX8xoRXeu7ll851z4suyUwTkDqC4CY3kFFDijAAsQFPayGRMlo7wSi_3fXJWH2VEIG4CSLXg-y8Yl8U4PIZIw9ugbjK0hxvXRu65DT6zz5HFQtXcxJadDVKZDonaurVVvkAyh7Ruy-nh_axNuBr9DskMfhkBWNGy7tkcSvdqgSQMjaTB9UbF1_XF2YFUX8OTnzrPn66un9S29f7i5Wy_vqckLEam1igPktqxNaUUhUCMohWhRVwXXnGsrhNLaGlFrDhpUqSueV8YwUSjN8nl2Nu1uvXsdMES5cYPv00vJL5MWLnJRJIpPlPEuBI9Wbn37ovwoGcgvxXJSLJNi-a1YQirlUykkuG_Q_03_0_oETrCDpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918628385</pqid></control><display><type>article</type><title>A robust synergetic controller for Quadrotor obstacle avoidance using Bézier curve versus B-spline trajectory generation</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>kheireddine, Chara ; Yassine, Abdessemed ; Fawzi, Srairi ; Khalil, Mokhtari</creator><creatorcontrib>kheireddine, Chara ; Yassine, Abdessemed ; Fawzi, Srairi ; Khalil, Mokhtari</creatorcontrib><description>This paper deals with a robust synergetic controller for planning an optimal trajectory and a guidance of the Quadrotor in complex environment. The Bézier curve method is introduced to plan the path of the Quadrotor, where the control points will be generated automatically to avoid the collusion with anything, keeping a high accuracy to detect the obstacles. In addition, the B-spline curves are generated in order to compare the proposed approach performances. Furthermore, a synergetic controller is synthesized for the attitude control of the Quadrotor, and the stability analysis of the proposed method is formally established. Numerical simulations are presented in order to show the effectiveness of the proposed controller. Experimental validation through a Quadrotor test bench is given in order to confirm the reported theoretical results.</description><identifier>ISSN: 1861-2776</identifier><identifier>EISSN: 1861-2784</identifier><identifier>DOI: 10.1007/s11370-021-00408-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aircraft ; Artificial Intelligence ; Attitude control ; B spline functions ; Control ; Controllers ; Curves ; Design ; Dynamical Systems ; Engineering ; Kinematics ; Mechatronics ; Methods ; Obstacle avoidance ; Original Research Paper ; Planning ; Robotics ; Robotics and Automation ; Robust control ; Sensors ; Stability analysis ; Systems stability ; Trajectory optimization ; Trajectory planning ; Unmanned aerial vehicles ; User Interfaces and Human Computer Interaction ; Vibration</subject><ispartof>Intelligent service robotics, 2022-03, Vol.15 (1), p.143-152</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-ffa2003f6dc6f858ebe0aaeefeb752b22bf88abbfc8db20b0a6b7237cc185ab13</citedby><cites>FETCH-LOGICAL-c358t-ffa2003f6dc6f858ebe0aaeefeb752b22bf88abbfc8db20b0a6b7237cc185ab13</cites><orcidid>0000-0002-4135-9883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11370-021-00408-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918628385?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>kheireddine, Chara</creatorcontrib><creatorcontrib>Yassine, Abdessemed</creatorcontrib><creatorcontrib>Fawzi, Srairi</creatorcontrib><creatorcontrib>Khalil, Mokhtari</creatorcontrib><title>A robust synergetic controller for Quadrotor obstacle avoidance using Bézier curve versus B-spline trajectory generation</title><title>Intelligent service robotics</title><addtitle>Intel Serv Robotics</addtitle><description>This paper deals with a robust synergetic controller for planning an optimal trajectory and a guidance of the Quadrotor in complex environment. The Bézier curve method is introduced to plan the path of the Quadrotor, where the control points will be generated automatically to avoid the collusion with anything, keeping a high accuracy to detect the obstacles. In addition, the B-spline curves are generated in order to compare the proposed approach performances. Furthermore, a synergetic controller is synthesized for the attitude control of the Quadrotor, and the stability analysis of the proposed method is formally established. Numerical simulations are presented in order to show the effectiveness of the proposed controller. Experimental validation through a Quadrotor test bench is given in order to confirm the reported theoretical results.</description><subject>Aircraft</subject><subject>Artificial Intelligence</subject><subject>Attitude control</subject><subject>B spline functions</subject><subject>Control</subject><subject>Controllers</subject><subject>Curves</subject><subject>Design</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Kinematics</subject><subject>Mechatronics</subject><subject>Methods</subject><subject>Obstacle avoidance</subject><subject>Original Research Paper</subject><subject>Planning</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Robust control</subject><subject>Sensors</subject><subject>Stability analysis</subject><subject>Systems stability</subject><subject>Trajectory optimization</subject><subject>Trajectory planning</subject><subject>Unmanned aerial vehicles</subject><subject>User Interfaces and Human Computer Interaction</subject><subject>Vibration</subject><issn>1861-2776</issn><issn>1861-2784</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1KxDAUhYsoOI6-gKuA6-hNOm3jcmbwDwQRdB2S9KZ0qM2YpAP1jXwOX8xoRXeu7ll851z4suyUwTkDqC4CY3kFFDijAAsQFPayGRMlo7wSi_3fXJWH2VEIG4CSLXg-y8Yl8U4PIZIw9ugbjK0hxvXRu65DT6zz5HFQtXcxJadDVKZDonaurVVvkAyh7Ruy-nh_axNuBr9DskMfhkBWNGy7tkcSvdqgSQMjaTB9UbF1_XF2YFUX8OTnzrPn66un9S29f7i5Wy_vqckLEam1igPktqxNaUUhUCMohWhRVwXXnGsrhNLaGlFrDhpUqSueV8YwUSjN8nl2Nu1uvXsdMES5cYPv00vJL5MWLnJRJIpPlPEuBI9Wbn37ovwoGcgvxXJSLJNi-a1YQirlUykkuG_Q_03_0_oETrCDpg</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>kheireddine, Chara</creator><creator>Yassine, Abdessemed</creator><creator>Fawzi, Srairi</creator><creator>Khalil, Mokhtari</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4135-9883</orcidid></search><sort><creationdate>20220301</creationdate><title>A robust synergetic controller for Quadrotor obstacle avoidance using Bézier curve versus B-spline trajectory generation</title><author>kheireddine, Chara ; Yassine, Abdessemed ; Fawzi, Srairi ; Khalil, Mokhtari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-ffa2003f6dc6f858ebe0aaeefeb752b22bf88abbfc8db20b0a6b7237cc185ab13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aircraft</topic><topic>Artificial Intelligence</topic><topic>Attitude control</topic><topic>B spline functions</topic><topic>Control</topic><topic>Controllers</topic><topic>Curves</topic><topic>Design</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Kinematics</topic><topic>Mechatronics</topic><topic>Methods</topic><topic>Obstacle avoidance</topic><topic>Original Research Paper</topic><topic>Planning</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Robust control</topic><topic>Sensors</topic><topic>Stability analysis</topic><topic>Systems stability</topic><topic>Trajectory optimization</topic><topic>Trajectory planning</topic><topic>Unmanned aerial vehicles</topic><topic>User Interfaces and Human Computer Interaction</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>kheireddine, Chara</creatorcontrib><creatorcontrib>Yassine, Abdessemed</creatorcontrib><creatorcontrib>Fawzi, Srairi</creatorcontrib><creatorcontrib>Khalil, Mokhtari</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Intelligent service robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>kheireddine, Chara</au><au>Yassine, Abdessemed</au><au>Fawzi, Srairi</au><au>Khalil, Mokhtari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust synergetic controller for Quadrotor obstacle avoidance using Bézier curve versus B-spline trajectory generation</atitle><jtitle>Intelligent service robotics</jtitle><stitle>Intel Serv Robotics</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>15</volume><issue>1</issue><spage>143</spage><epage>152</epage><pages>143-152</pages><issn>1861-2776</issn><eissn>1861-2784</eissn><abstract>This paper deals with a robust synergetic controller for planning an optimal trajectory and a guidance of the Quadrotor in complex environment. The Bézier curve method is introduced to plan the path of the Quadrotor, where the control points will be generated automatically to avoid the collusion with anything, keeping a high accuracy to detect the obstacles. In addition, the B-spline curves are generated in order to compare the proposed approach performances. Furthermore, a synergetic controller is synthesized for the attitude control of the Quadrotor, and the stability analysis of the proposed method is formally established. Numerical simulations are presented in order to show the effectiveness of the proposed controller. Experimental validation through a Quadrotor test bench is given in order to confirm the reported theoretical results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11370-021-00408-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4135-9883</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-2776
ispartof Intelligent service robotics, 2022-03, Vol.15 (1), p.143-152
issn 1861-2776
1861-2784
language eng
recordid cdi_proquest_journals_2918628385
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Aircraft
Artificial Intelligence
Attitude control
B spline functions
Control
Controllers
Curves
Design
Dynamical Systems
Engineering
Kinematics
Mechatronics
Methods
Obstacle avoidance
Original Research Paper
Planning
Robotics
Robotics and Automation
Robust control
Sensors
Stability analysis
Systems stability
Trajectory optimization
Trajectory planning
Unmanned aerial vehicles
User Interfaces and Human Computer Interaction
Vibration
title A robust synergetic controller for Quadrotor obstacle avoidance using Bézier curve versus B-spline trajectory generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20synergetic%20controller%20for%20Quadrotor%20obstacle%20avoidance%20using%20B%C3%A9zier%20curve%20versus%20B-spline%20trajectory%20generation&rft.jtitle=Intelligent%20service%20robotics&rft.au=kheireddine,%20Chara&rft.date=2022-03-01&rft.volume=15&rft.issue=1&rft.spage=143&rft.epage=152&rft.pages=143-152&rft.issn=1861-2776&rft.eissn=1861-2784&rft_id=info:doi/10.1007/s11370-021-00408-0&rft_dat=%3Cproquest_cross%3E2918628385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918628385&rft_id=info:pmid/&rfr_iscdi=true