Analytical Approximations for Fitting Magnetic Coupling Coefficients Between Adjacent Coils

This article presents a simple yet novel 2-D modeling approach for approximating the coupling coefficient between neighboring inductors as a function of coplanar separation and relative angular displacement. The approach uses simple geometric arguments to predict the effective magnetic flux between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2024-02, Vol.60 (2), p.1-9
Hauptverfasser: Hughes, Robert R., Arroyo, Alexis Hernandez, Mulholland, Anthony J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 2
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 60
creator Hughes, Robert R.
Arroyo, Alexis Hernandez
Mulholland, Anthony J.
description This article presents a simple yet novel 2-D modeling approach for approximating the coupling coefficient between neighboring inductors as a function of coplanar separation and relative angular displacement. The approach uses simple geometric arguments to predict the effective magnetic flux between inductors. Two extreme coil geometry regimes are considered: planar coils (i.e., on printed circuit board) and solenoid coils, each with asymmetric ferrite cores about the central magnetic plane of the inductor. The proposed geometric approximation is used to predict the coupling coefficient between sensors as a function of separation distance and angular displacement, and the results are validated against 2-D finite element modeling results. The formulae approximations show excellent fit agreement with finite element (FE) simulated coupling coefficients, predicting comparable relationships with changing separation and angular displacement. When fit to 2-D FE and 3-D numerical coupling coefficient results, the approximated formulae exhibit a residual standard deviation of less than 0.5% for a planar coil design. The work demonstrates the validity of the analytical approximation for predicting coupling behavior between neighboring coils. This has practical uses for the automated estimation of the physical separation between coils, or the relative angles to determine curvature of surface coils are rested or adhered to.
doi_str_mv 10.1109/TMAG.2023.3344214
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2918627108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10365219</ieee_id><sourcerecordid>2918627108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-63fb0e91cf0cd33c43a2ea367380c2e9857319103f776e3cc308a7a12739b3933</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EEqXwA5AYIjGn-HyuE48hogWpFUuZGCzXtStXISmxK-i_x1E7MJ3u7r3TvY-Qe6ATACqfVstqPmGU4QSRcwb8goxAcsgpFfKSjCiFMpdc8GtyE8IutXwKdEQ-q1Y3x-iNbrJqv--7X_-lo-_akLmuz2Y-Rt9us6Xetjapsro77JthUnfWOW-8bWPInm38sbbNqs1OmzRJW9-EW3LldBPs3bmOycfsZVW_5ov3-VtdLXLDuIi5QLemVoJx1GwQDUfNrEZRYEkNs7KcFggSKLqiEBaNQVrqQgMrUK5RIo7J4-luev_7YENUu-7Qp1xBMQmlYAXQMqngpDJ9F0Jvndr3KWt_VEDVwFANDNXAUJ0ZJs_DyeOttf_0KKYMJP4B4JJtCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918627108</pqid></control><display><type>article</type><title>Analytical Approximations for Fitting Magnetic Coupling Coefficients Between Adjacent Coils</title><source>IEEE Electronic Library (IEL)</source><creator>Hughes, Robert R. ; Arroyo, Alexis Hernandez ; Mulholland, Anthony J.</creator><creatorcontrib>Hughes, Robert R. ; Arroyo, Alexis Hernandez ; Mulholland, Anthony J.</creatorcontrib><description>This article presents a simple yet novel 2-D modeling approach for approximating the coupling coefficient between neighboring inductors as a function of coplanar separation and relative angular displacement. The approach uses simple geometric arguments to predict the effective magnetic flux between inductors. Two extreme coil geometry regimes are considered: planar coils (i.e., on printed circuit board) and solenoid coils, each with asymmetric ferrite cores about the central magnetic plane of the inductor. The proposed geometric approximation is used to predict the coupling coefficient between sensors as a function of separation distance and angular displacement, and the results are validated against 2-D finite element modeling results. The formulae approximations show excellent fit agreement with finite element (FE) simulated coupling coefficients, predicting comparable relationships with changing separation and angular displacement. When fit to 2-D FE and 3-D numerical coupling coefficient results, the approximated formulae exhibit a residual standard deviation of less than 0.5% for a planar coil design. The work demonstrates the validity of the analytical approximation for predicting coupling behavior between neighboring coils. This has practical uses for the automated estimation of the physical separation between coils, or the relative angles to determine curvature of surface coils are rested or adhered to.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3344214</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Angles (geometry) ; Approximation ; Coils ; Coupling coefficients ; Finite element method ; Inductors ; Magnetic cores ; Magnetic flux ; Magnetic flux density ; Mathematical models ; mutual inductance ; Separation ; Solenoids ; Two dimensional models</subject><ispartof>IEEE transactions on magnetics, 2024-02, Vol.60 (2), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-63fb0e91cf0cd33c43a2ea367380c2e9857319103f776e3cc308a7a12739b3933</cites><orcidid>0000-0003-1648-5228 ; 0009-0007-0956-803X ; 0000-0002-3626-4556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10365219$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10365219$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hughes, Robert R.</creatorcontrib><creatorcontrib>Arroyo, Alexis Hernandez</creatorcontrib><creatorcontrib>Mulholland, Anthony J.</creatorcontrib><title>Analytical Approximations for Fitting Magnetic Coupling Coefficients Between Adjacent Coils</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>This article presents a simple yet novel 2-D modeling approach for approximating the coupling coefficient between neighboring inductors as a function of coplanar separation and relative angular displacement. The approach uses simple geometric arguments to predict the effective magnetic flux between inductors. Two extreme coil geometry regimes are considered: planar coils (i.e., on printed circuit board) and solenoid coils, each with asymmetric ferrite cores about the central magnetic plane of the inductor. The proposed geometric approximation is used to predict the coupling coefficient between sensors as a function of separation distance and angular displacement, and the results are validated against 2-D finite element modeling results. The formulae approximations show excellent fit agreement with finite element (FE) simulated coupling coefficients, predicting comparable relationships with changing separation and angular displacement. When fit to 2-D FE and 3-D numerical coupling coefficient results, the approximated formulae exhibit a residual standard deviation of less than 0.5% for a planar coil design. The work demonstrates the validity of the analytical approximation for predicting coupling behavior between neighboring coils. This has practical uses for the automated estimation of the physical separation between coils, or the relative angles to determine curvature of surface coils are rested or adhered to.</description><subject>Angles (geometry)</subject><subject>Approximation</subject><subject>Coils</subject><subject>Coupling coefficients</subject><subject>Finite element method</subject><subject>Inductors</subject><subject>Magnetic cores</subject><subject>Magnetic flux</subject><subject>Magnetic flux density</subject><subject>Mathematical models</subject><subject>mutual inductance</subject><subject>Separation</subject><subject>Solenoids</subject><subject>Two dimensional models</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQhS0EEqXwA5AYIjGn-HyuE48hogWpFUuZGCzXtStXISmxK-i_x1E7MJ3u7r3TvY-Qe6ATACqfVstqPmGU4QSRcwb8goxAcsgpFfKSjCiFMpdc8GtyE8IutXwKdEQ-q1Y3x-iNbrJqv--7X_-lo-_akLmuz2Y-Rt9us6Xetjapsro77JthUnfWOW-8bWPInm38sbbNqs1OmzRJW9-EW3LldBPs3bmOycfsZVW_5ov3-VtdLXLDuIi5QLemVoJx1GwQDUfNrEZRYEkNs7KcFggSKLqiEBaNQVrqQgMrUK5RIo7J4-luev_7YENUu-7Qp1xBMQmlYAXQMqngpDJ9F0Jvndr3KWt_VEDVwFANDNXAUJ0ZJs_DyeOttf_0KKYMJP4B4JJtCQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Hughes, Robert R.</creator><creator>Arroyo, Alexis Hernandez</creator><creator>Mulholland, Anthony J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1648-5228</orcidid><orcidid>https://orcid.org/0009-0007-0956-803X</orcidid><orcidid>https://orcid.org/0000-0002-3626-4556</orcidid></search><sort><creationdate>20240201</creationdate><title>Analytical Approximations for Fitting Magnetic Coupling Coefficients Between Adjacent Coils</title><author>Hughes, Robert R. ; Arroyo, Alexis Hernandez ; Mulholland, Anthony J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-63fb0e91cf0cd33c43a2ea367380c2e9857319103f776e3cc308a7a12739b3933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angles (geometry)</topic><topic>Approximation</topic><topic>Coils</topic><topic>Coupling coefficients</topic><topic>Finite element method</topic><topic>Inductors</topic><topic>Magnetic cores</topic><topic>Magnetic flux</topic><topic>Magnetic flux density</topic><topic>Mathematical models</topic><topic>mutual inductance</topic><topic>Separation</topic><topic>Solenoids</topic><topic>Two dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Hughes, Robert R.</creatorcontrib><creatorcontrib>Arroyo, Alexis Hernandez</creatorcontrib><creatorcontrib>Mulholland, Anthony J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hughes, Robert R.</au><au>Arroyo, Alexis Hernandez</au><au>Mulholland, Anthony J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Approximations for Fitting Magnetic Coupling Coefficients Between Adjacent Coils</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>60</volume><issue>2</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>This article presents a simple yet novel 2-D modeling approach for approximating the coupling coefficient between neighboring inductors as a function of coplanar separation and relative angular displacement. The approach uses simple geometric arguments to predict the effective magnetic flux between inductors. Two extreme coil geometry regimes are considered: planar coils (i.e., on printed circuit board) and solenoid coils, each with asymmetric ferrite cores about the central magnetic plane of the inductor. The proposed geometric approximation is used to predict the coupling coefficient between sensors as a function of separation distance and angular displacement, and the results are validated against 2-D finite element modeling results. The formulae approximations show excellent fit agreement with finite element (FE) simulated coupling coefficients, predicting comparable relationships with changing separation and angular displacement. When fit to 2-D FE and 3-D numerical coupling coefficient results, the approximated formulae exhibit a residual standard deviation of less than 0.5% for a planar coil design. The work demonstrates the validity of the analytical approximation for predicting coupling behavior between neighboring coils. This has practical uses for the automated estimation of the physical separation between coils, or the relative angles to determine curvature of surface coils are rested or adhered to.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2023.3344214</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1648-5228</orcidid><orcidid>https://orcid.org/0009-0007-0956-803X</orcidid><orcidid>https://orcid.org/0000-0002-3626-4556</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2024-02, Vol.60 (2), p.1-9
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_journals_2918627108
source IEEE Electronic Library (IEL)
subjects Angles (geometry)
Approximation
Coils
Coupling coefficients
Finite element method
Inductors
Magnetic cores
Magnetic flux
Magnetic flux density
Mathematical models
mutual inductance
Separation
Solenoids
Two dimensional models
title Analytical Approximations for Fitting Magnetic Coupling Coefficients Between Adjacent Coils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Approximations%20for%20Fitting%20Magnetic%20Coupling%20Coefficients%20Between%20Adjacent%20Coils&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Hughes,%20Robert%20R.&rft.date=2024-02-01&rft.volume=60&rft.issue=2&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2023.3344214&rft_dat=%3Cproquest_RIE%3E2918627108%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918627108&rft_id=info:pmid/&rft_ieee_id=10365219&rfr_iscdi=true