Analytical Approximations for Fitting Magnetic Coupling Coefficients Between Adjacent Coils
This article presents a simple yet novel 2-D modeling approach for approximating the coupling coefficient between neighboring inductors as a function of coplanar separation and relative angular displacement. The approach uses simple geometric arguments to predict the effective magnetic flux between...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2024-02, Vol.60 (2), p.1-9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 60 |
creator | Hughes, Robert R. Arroyo, Alexis Hernandez Mulholland, Anthony J. |
description | This article presents a simple yet novel 2-D modeling approach for approximating the coupling coefficient between neighboring inductors as a function of coplanar separation and relative angular displacement. The approach uses simple geometric arguments to predict the effective magnetic flux between inductors. Two extreme coil geometry regimes are considered: planar coils (i.e., on printed circuit board) and solenoid coils, each with asymmetric ferrite cores about the central magnetic plane of the inductor. The proposed geometric approximation is used to predict the coupling coefficient between sensors as a function of separation distance and angular displacement, and the results are validated against 2-D finite element modeling results. The formulae approximations show excellent fit agreement with finite element (FE) simulated coupling coefficients, predicting comparable relationships with changing separation and angular displacement. When fit to 2-D FE and 3-D numerical coupling coefficient results, the approximated formulae exhibit a residual standard deviation of less than 0.5% for a planar coil design. The work demonstrates the validity of the analytical approximation for predicting coupling behavior between neighboring coils. This has practical uses for the automated estimation of the physical separation between coils, or the relative angles to determine curvature of surface coils are rested or adhered to. |
doi_str_mv | 10.1109/TMAG.2023.3344214 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2918627108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10365219</ieee_id><sourcerecordid>2918627108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-63fb0e91cf0cd33c43a2ea367380c2e9857319103f776e3cc308a7a12739b3933</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EEqXwA5AYIjGn-HyuE48hogWpFUuZGCzXtStXISmxK-i_x1E7MJ3u7r3TvY-Qe6ATACqfVstqPmGU4QSRcwb8goxAcsgpFfKSjCiFMpdc8GtyE8IutXwKdEQ-q1Y3x-iNbrJqv--7X_-lo-_akLmuz2Y-Rt9us6Xetjapsro77JthUnfWOW-8bWPInm38sbbNqs1OmzRJW9-EW3LldBPs3bmOycfsZVW_5ov3-VtdLXLDuIi5QLemVoJx1GwQDUfNrEZRYEkNs7KcFggSKLqiEBaNQVrqQgMrUK5RIo7J4-luev_7YENUu-7Qp1xBMQmlYAXQMqngpDJ9F0Jvndr3KWt_VEDVwFANDNXAUJ0ZJs_DyeOttf_0KKYMJP4B4JJtCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918627108</pqid></control><display><type>article</type><title>Analytical Approximations for Fitting Magnetic Coupling Coefficients Between Adjacent Coils</title><source>IEEE Electronic Library (IEL)</source><creator>Hughes, Robert R. ; Arroyo, Alexis Hernandez ; Mulholland, Anthony J.</creator><creatorcontrib>Hughes, Robert R. ; Arroyo, Alexis Hernandez ; Mulholland, Anthony J.</creatorcontrib><description>This article presents a simple yet novel 2-D modeling approach for approximating the coupling coefficient between neighboring inductors as a function of coplanar separation and relative angular displacement. The approach uses simple geometric arguments to predict the effective magnetic flux between inductors. Two extreme coil geometry regimes are considered: planar coils (i.e., on printed circuit board) and solenoid coils, each with asymmetric ferrite cores about the central magnetic plane of the inductor. The proposed geometric approximation is used to predict the coupling coefficient between sensors as a function of separation distance and angular displacement, and the results are validated against 2-D finite element modeling results. The formulae approximations show excellent fit agreement with finite element (FE) simulated coupling coefficients, predicting comparable relationships with changing separation and angular displacement. When fit to 2-D FE and 3-D numerical coupling coefficient results, the approximated formulae exhibit a residual standard deviation of less than 0.5% for a planar coil design. The work demonstrates the validity of the analytical approximation for predicting coupling behavior between neighboring coils. This has practical uses for the automated estimation of the physical separation between coils, or the relative angles to determine curvature of surface coils are rested or adhered to.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3344214</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Angles (geometry) ; Approximation ; Coils ; Coupling coefficients ; Finite element method ; Inductors ; Magnetic cores ; Magnetic flux ; Magnetic flux density ; Mathematical models ; mutual inductance ; Separation ; Solenoids ; Two dimensional models</subject><ispartof>IEEE transactions on magnetics, 2024-02, Vol.60 (2), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-63fb0e91cf0cd33c43a2ea367380c2e9857319103f776e3cc308a7a12739b3933</cites><orcidid>0000-0003-1648-5228 ; 0009-0007-0956-803X ; 0000-0002-3626-4556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10365219$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10365219$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hughes, Robert R.</creatorcontrib><creatorcontrib>Arroyo, Alexis Hernandez</creatorcontrib><creatorcontrib>Mulholland, Anthony J.</creatorcontrib><title>Analytical Approximations for Fitting Magnetic Coupling Coefficients Between Adjacent Coils</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>This article presents a simple yet novel 2-D modeling approach for approximating the coupling coefficient between neighboring inductors as a function of coplanar separation and relative angular displacement. The approach uses simple geometric arguments to predict the effective magnetic flux between inductors. Two extreme coil geometry regimes are considered: planar coils (i.e., on printed circuit board) and solenoid coils, each with asymmetric ferrite cores about the central magnetic plane of the inductor. The proposed geometric approximation is used to predict the coupling coefficient between sensors as a function of separation distance and angular displacement, and the results are validated against 2-D finite element modeling results. The formulae approximations show excellent fit agreement with finite element (FE) simulated coupling coefficients, predicting comparable relationships with changing separation and angular displacement. When fit to 2-D FE and 3-D numerical coupling coefficient results, the approximated formulae exhibit a residual standard deviation of less than 0.5% for a planar coil design. The work demonstrates the validity of the analytical approximation for predicting coupling behavior between neighboring coils. This has practical uses for the automated estimation of the physical separation between coils, or the relative angles to determine curvature of surface coils are rested or adhered to.</description><subject>Angles (geometry)</subject><subject>Approximation</subject><subject>Coils</subject><subject>Coupling coefficients</subject><subject>Finite element method</subject><subject>Inductors</subject><subject>Magnetic cores</subject><subject>Magnetic flux</subject><subject>Magnetic flux density</subject><subject>Mathematical models</subject><subject>mutual inductance</subject><subject>Separation</subject><subject>Solenoids</subject><subject>Two dimensional models</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQhS0EEqXwA5AYIjGn-HyuE48hogWpFUuZGCzXtStXISmxK-i_x1E7MJ3u7r3TvY-Qe6ATACqfVstqPmGU4QSRcwb8goxAcsgpFfKSjCiFMpdc8GtyE8IutXwKdEQ-q1Y3x-iNbrJqv--7X_-lo-_akLmuz2Y-Rt9us6Xetjapsro77JthUnfWOW-8bWPInm38sbbNqs1OmzRJW9-EW3LldBPs3bmOycfsZVW_5ov3-VtdLXLDuIi5QLemVoJx1GwQDUfNrEZRYEkNs7KcFggSKLqiEBaNQVrqQgMrUK5RIo7J4-luev_7YENUu-7Qp1xBMQmlYAXQMqngpDJ9F0Jvndr3KWt_VEDVwFANDNXAUJ0ZJs_DyeOttf_0KKYMJP4B4JJtCQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Hughes, Robert R.</creator><creator>Arroyo, Alexis Hernandez</creator><creator>Mulholland, Anthony J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1648-5228</orcidid><orcidid>https://orcid.org/0009-0007-0956-803X</orcidid><orcidid>https://orcid.org/0000-0002-3626-4556</orcidid></search><sort><creationdate>20240201</creationdate><title>Analytical Approximations for Fitting Magnetic Coupling Coefficients Between Adjacent Coils</title><author>Hughes, Robert R. ; Arroyo, Alexis Hernandez ; Mulholland, Anthony J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-63fb0e91cf0cd33c43a2ea367380c2e9857319103f776e3cc308a7a12739b3933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angles (geometry)</topic><topic>Approximation</topic><topic>Coils</topic><topic>Coupling coefficients</topic><topic>Finite element method</topic><topic>Inductors</topic><topic>Magnetic cores</topic><topic>Magnetic flux</topic><topic>Magnetic flux density</topic><topic>Mathematical models</topic><topic>mutual inductance</topic><topic>Separation</topic><topic>Solenoids</topic><topic>Two dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Hughes, Robert R.</creatorcontrib><creatorcontrib>Arroyo, Alexis Hernandez</creatorcontrib><creatorcontrib>Mulholland, Anthony J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hughes, Robert R.</au><au>Arroyo, Alexis Hernandez</au><au>Mulholland, Anthony J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Approximations for Fitting Magnetic Coupling Coefficients Between Adjacent Coils</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>60</volume><issue>2</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>This article presents a simple yet novel 2-D modeling approach for approximating the coupling coefficient between neighboring inductors as a function of coplanar separation and relative angular displacement. The approach uses simple geometric arguments to predict the effective magnetic flux between inductors. Two extreme coil geometry regimes are considered: planar coils (i.e., on printed circuit board) and solenoid coils, each with asymmetric ferrite cores about the central magnetic plane of the inductor. The proposed geometric approximation is used to predict the coupling coefficient between sensors as a function of separation distance and angular displacement, and the results are validated against 2-D finite element modeling results. The formulae approximations show excellent fit agreement with finite element (FE) simulated coupling coefficients, predicting comparable relationships with changing separation and angular displacement. When fit to 2-D FE and 3-D numerical coupling coefficient results, the approximated formulae exhibit a residual standard deviation of less than 0.5% for a planar coil design. The work demonstrates the validity of the analytical approximation for predicting coupling behavior between neighboring coils. This has practical uses for the automated estimation of the physical separation between coils, or the relative angles to determine curvature of surface coils are rested or adhered to.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2023.3344214</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1648-5228</orcidid><orcidid>https://orcid.org/0009-0007-0956-803X</orcidid><orcidid>https://orcid.org/0000-0002-3626-4556</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2024-02, Vol.60 (2), p.1-9 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_proquest_journals_2918627108 |
source | IEEE Electronic Library (IEL) |
subjects | Angles (geometry) Approximation Coils Coupling coefficients Finite element method Inductors Magnetic cores Magnetic flux Magnetic flux density Mathematical models mutual inductance Separation Solenoids Two dimensional models |
title | Analytical Approximations for Fitting Magnetic Coupling Coefficients Between Adjacent Coils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Approximations%20for%20Fitting%20Magnetic%20Coupling%20Coefficients%20Between%20Adjacent%20Coils&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Hughes,%20Robert%20R.&rft.date=2024-02-01&rft.volume=60&rft.issue=2&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2023.3344214&rft_dat=%3Cproquest_RIE%3E2918627108%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918627108&rft_id=info:pmid/&rft_ieee_id=10365219&rfr_iscdi=true |