Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B four-operator splitting method for solving monotone inclusions

In this paper, we propose and study the iteration complexity of an inexact Douglas-Rachford splitting (DRS) method and a Douglas-Rachford-Tseng’s forward-backward (F-B) splitting method for solving two-operator and four-operator monotone inclusions, respectively. The former method (although based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2019-09, Vol.82 (1), p.263-295
Hauptverfasser: Alves, M. Marques, Geremia, Marina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 295
container_issue 1
container_start_page 263
container_title Numerical algorithms
container_volume 82
creator Alves, M. Marques
Geremia, Marina
description In this paper, we propose and study the iteration complexity of an inexact Douglas-Rachford splitting (DRS) method and a Douglas-Rachford-Tseng’s forward-backward (F-B) splitting method for solving two-operator and four-operator monotone inclusions, respectively. The former method (although based on a slightly different mechanism of iteration) is motivated by the recent work of J. Eckstein and W. Yao, in which an inexact DRS method is derived from a special instance of the hybrid proximal extragradient (HPE) method of Solodov and Svaiter, while the latter one combines the proposed inexact DRS method (used as an outer iteration) with a Tseng’s F-B splitting-type method (used as an inner iteration) for solving the corresponding subproblems. We prove iteration complexity bounds for both algorithms in the pointwise (non-ergodic) as well as in the ergodic sense by showing that they admit two different iterations: one that can be embedded into the HPE method, for which the iteration complexity is known since the work of Monteiro and Svaiter, and another one which demands a separate analysis. Finally, we perform simple numerical experiments to show the performance of the proposed methods when compared with other existing algorithms.
doi_str_mv 10.1007/s11075-018-0604-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918623345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918623345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5f7e4722be9f14e2965a1d47a68204f2c233a5a7031cd804f66a1a6f39c835fd3</originalsourceid><addsrcrecordid>eNp1kc9KxDAYxIsoqKsP4C3gOZovbZP26H-FBUHWc4hpUivdpCapuDdfw6Ov5pOY3VU8iKeE4TczH0yWHQA5AkL4cQAgvMQEKkwYKTBsZDtQcoprysrN9CfAMeR1tZ3thvBESHJRvpN93ETtZeycRcrNh16_dnGBnEHSos7qV6kiOndj28uA76R6NM43aK7jo2sS0qzIPwCeBW3bz7f3gC7xKTJu9NgNyx7nURj6LsbOtj8xZim6_mUlOeuiszp1q34M6aywl20Z2Qe9__1OsvvLi9nZNZ7eXt2cnUyxyoFFXBquC07pg64NFJrWrJTQFFyyipLCUEXzXJaSkxxUUyWFMQmSmbxWVV6aJp9kh-vcwbvnUYcontLdNlUKWkPFkr8oEwVrSnkXgtdGDL6bS78QQMRyCbFeQqQlxHIJAclD156QWNtq_5v8v-kLGiKPKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918623345</pqid></control><display><type>article</type><title>Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B four-operator splitting method for solving monotone inclusions</title><source>SpringerLink Journals</source><creator>Alves, M. Marques ; Geremia, Marina</creator><creatorcontrib>Alves, M. Marques ; Geremia, Marina</creatorcontrib><description>In this paper, we propose and study the iteration complexity of an inexact Douglas-Rachford splitting (DRS) method and a Douglas-Rachford-Tseng’s forward-backward (F-B) splitting method for solving two-operator and four-operator monotone inclusions, respectively. The former method (although based on a slightly different mechanism of iteration) is motivated by the recent work of J. Eckstein and W. Yao, in which an inexact DRS method is derived from a special instance of the hybrid proximal extragradient (HPE) method of Solodov and Svaiter, while the latter one combines the proposed inexact DRS method (used as an outer iteration) with a Tseng’s F-B splitting-type method (used as an inner iteration) for solving the corresponding subproblems. We prove iteration complexity bounds for both algorithms in the pointwise (non-ergodic) as well as in the ergodic sense by showing that they admit two different iterations: one that can be embedded into the HPE method, for which the iteration complexity is known since the work of Monteiro and Svaiter, and another one which demands a separate analysis. Finally, we perform simple numerical experiments to show the performance of the proposed methods when compared with other existing algorithms.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-018-0604-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Complexity ; Computer Science ; Ergodic processes ; Inclusions ; Iterative methods ; Numeric Computing ; Numerical Analysis ; Original Paper ; Splitting ; Theory of Computation</subject><ispartof>Numerical algorithms, 2019-09, Vol.82 (1), p.263-295</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5f7e4722be9f14e2965a1d47a68204f2c233a5a7031cd804f66a1a6f39c835fd3</citedby><cites>FETCH-LOGICAL-c316t-5f7e4722be9f14e2965a1d47a68204f2c233a5a7031cd804f66a1a6f39c835fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-018-0604-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-018-0604-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Alves, M. Marques</creatorcontrib><creatorcontrib>Geremia, Marina</creatorcontrib><title>Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B four-operator splitting method for solving monotone inclusions</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>In this paper, we propose and study the iteration complexity of an inexact Douglas-Rachford splitting (DRS) method and a Douglas-Rachford-Tseng’s forward-backward (F-B) splitting method for solving two-operator and four-operator monotone inclusions, respectively. The former method (although based on a slightly different mechanism of iteration) is motivated by the recent work of J. Eckstein and W. Yao, in which an inexact DRS method is derived from a special instance of the hybrid proximal extragradient (HPE) method of Solodov and Svaiter, while the latter one combines the proposed inexact DRS method (used as an outer iteration) with a Tseng’s F-B splitting-type method (used as an inner iteration) for solving the corresponding subproblems. We prove iteration complexity bounds for both algorithms in the pointwise (non-ergodic) as well as in the ergodic sense by showing that they admit two different iterations: one that can be embedded into the HPE method, for which the iteration complexity is known since the work of Monteiro and Svaiter, and another one which demands a separate analysis. Finally, we perform simple numerical experiments to show the performance of the proposed methods when compared with other existing algorithms.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Ergodic processes</subject><subject>Inclusions</subject><subject>Iterative methods</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Splitting</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc9KxDAYxIsoqKsP4C3gOZovbZP26H-FBUHWc4hpUivdpCapuDdfw6Ov5pOY3VU8iKeE4TczH0yWHQA5AkL4cQAgvMQEKkwYKTBsZDtQcoprysrN9CfAMeR1tZ3thvBESHJRvpN93ETtZeycRcrNh16_dnGBnEHSos7qV6kiOndj28uA76R6NM43aK7jo2sS0qzIPwCeBW3bz7f3gC7xKTJu9NgNyx7nURj6LsbOtj8xZim6_mUlOeuiszp1q34M6aywl20Z2Qe9__1OsvvLi9nZNZ7eXt2cnUyxyoFFXBquC07pg64NFJrWrJTQFFyyipLCUEXzXJaSkxxUUyWFMQmSmbxWVV6aJp9kh-vcwbvnUYcontLdNlUKWkPFkr8oEwVrSnkXgtdGDL6bS78QQMRyCbFeQqQlxHIJAclD156QWNtq_5v8v-kLGiKPKQ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Alves, M. Marques</creator><creator>Geremia, Marina</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20190901</creationdate><title>Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B four-operator splitting method for solving monotone inclusions</title><author>Alves, M. Marques ; Geremia, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5f7e4722be9f14e2965a1d47a68204f2c233a5a7031cd804f66a1a6f39c835fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Ergodic processes</topic><topic>Inclusions</topic><topic>Iterative methods</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Splitting</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, M. Marques</creatorcontrib><creatorcontrib>Geremia, Marina</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, M. Marques</au><au>Geremia, Marina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B four-operator splitting method for solving monotone inclusions</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>82</volume><issue>1</issue><spage>263</spage><epage>295</epage><pages>263-295</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>In this paper, we propose and study the iteration complexity of an inexact Douglas-Rachford splitting (DRS) method and a Douglas-Rachford-Tseng’s forward-backward (F-B) splitting method for solving two-operator and four-operator monotone inclusions, respectively. The former method (although based on a slightly different mechanism of iteration) is motivated by the recent work of J. Eckstein and W. Yao, in which an inexact DRS method is derived from a special instance of the hybrid proximal extragradient (HPE) method of Solodov and Svaiter, while the latter one combines the proposed inexact DRS method (used as an outer iteration) with a Tseng’s F-B splitting-type method (used as an inner iteration) for solving the corresponding subproblems. We prove iteration complexity bounds for both algorithms in the pointwise (non-ergodic) as well as in the ergodic sense by showing that they admit two different iterations: one that can be embedded into the HPE method, for which the iteration complexity is known since the work of Monteiro and Svaiter, and another one which demands a separate analysis. Finally, we perform simple numerical experiments to show the performance of the proposed methods when compared with other existing algorithms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-018-0604-1</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2019-09, Vol.82 (1), p.263-295
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918623345
source SpringerLink Journals
subjects Algebra
Algorithms
Complexity
Computer Science
Ergodic processes
Inclusions
Iterative methods
Numeric Computing
Numerical Analysis
Original Paper
Splitting
Theory of Computation
title Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B four-operator splitting method for solving monotone inclusions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iteration%20complexity%20of%20an%20inexact%20Douglas-Rachford%20method%20and%20of%20a%20Douglas-Rachford-Tseng%E2%80%99s%20F-B%20four-operator%20splitting%20method%20for%20solving%20monotone%20inclusions&rft.jtitle=Numerical%20algorithms&rft.au=Alves,%20M.%20Marques&rft.date=2019-09-01&rft.volume=82&rft.issue=1&rft.spage=263&rft.epage=295&rft.pages=263-295&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-018-0604-1&rft_dat=%3Cproquest_cross%3E2918623345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918623345&rft_id=info:pmid/&rfr_iscdi=true