Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B four-operator splitting method for solving monotone inclusions
In this paper, we propose and study the iteration complexity of an inexact Douglas-Rachford splitting (DRS) method and a Douglas-Rachford-Tseng’s forward-backward (F-B) splitting method for solving two-operator and four-operator monotone inclusions, respectively. The former method (although based on...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2019-09, Vol.82 (1), p.263-295 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 295 |
---|---|
container_issue | 1 |
container_start_page | 263 |
container_title | Numerical algorithms |
container_volume | 82 |
creator | Alves, M. Marques Geremia, Marina |
description | In this paper, we propose and study the iteration complexity of an inexact Douglas-Rachford splitting (DRS) method and a Douglas-Rachford-Tseng’s forward-backward (F-B) splitting method for solving two-operator and four-operator monotone inclusions, respectively. The former method (although based on a slightly different mechanism of iteration) is motivated by the recent work of J. Eckstein and W. Yao, in which an inexact DRS method is derived from a special instance of the hybrid proximal extragradient (HPE) method of Solodov and Svaiter, while the latter one combines the proposed inexact DRS method (used as an outer iteration) with a Tseng’s F-B splitting-type method (used as an inner iteration) for solving the corresponding subproblems. We prove iteration complexity bounds for both algorithms in the pointwise (non-ergodic) as well as in the ergodic sense by showing that they admit two different iterations: one that can be embedded into the HPE method, for which the iteration complexity is known since the work of Monteiro and Svaiter, and another one which demands a separate analysis. Finally, we perform simple numerical experiments to show the performance of the proposed methods when compared with other existing algorithms. |
doi_str_mv | 10.1007/s11075-018-0604-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918623345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918623345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5f7e4722be9f14e2965a1d47a68204f2c233a5a7031cd804f66a1a6f39c835fd3</originalsourceid><addsrcrecordid>eNp1kc9KxDAYxIsoqKsP4C3gOZovbZP26H-FBUHWc4hpUivdpCapuDdfw6Ov5pOY3VU8iKeE4TczH0yWHQA5AkL4cQAgvMQEKkwYKTBsZDtQcoprysrN9CfAMeR1tZ3thvBESHJRvpN93ETtZeycRcrNh16_dnGBnEHSos7qV6kiOndj28uA76R6NM43aK7jo2sS0qzIPwCeBW3bz7f3gC7xKTJu9NgNyx7nURj6LsbOtj8xZim6_mUlOeuiszp1q34M6aywl20Z2Qe9__1OsvvLi9nZNZ7eXt2cnUyxyoFFXBquC07pg64NFJrWrJTQFFyyipLCUEXzXJaSkxxUUyWFMQmSmbxWVV6aJp9kh-vcwbvnUYcontLdNlUKWkPFkr8oEwVrSnkXgtdGDL6bS78QQMRyCbFeQqQlxHIJAclD156QWNtq_5v8v-kLGiKPKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918623345</pqid></control><display><type>article</type><title>Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B four-operator splitting method for solving monotone inclusions</title><source>SpringerLink Journals</source><creator>Alves, M. Marques ; Geremia, Marina</creator><creatorcontrib>Alves, M. Marques ; Geremia, Marina</creatorcontrib><description>In this paper, we propose and study the iteration complexity of an inexact Douglas-Rachford splitting (DRS) method and a Douglas-Rachford-Tseng’s forward-backward (F-B) splitting method for solving two-operator and four-operator monotone inclusions, respectively. The former method (although based on a slightly different mechanism of iteration) is motivated by the recent work of J. Eckstein and W. Yao, in which an inexact DRS method is derived from a special instance of the hybrid proximal extragradient (HPE) method of Solodov and Svaiter, while the latter one combines the proposed inexact DRS method (used as an outer iteration) with a Tseng’s F-B splitting-type method (used as an inner iteration) for solving the corresponding subproblems. We prove iteration complexity bounds for both algorithms in the pointwise (non-ergodic) as well as in the ergodic sense by showing that they admit two different iterations: one that can be embedded into the HPE method, for which the iteration complexity is known since the work of Monteiro and Svaiter, and another one which demands a separate analysis. Finally, we perform simple numerical experiments to show the performance of the proposed methods when compared with other existing algorithms.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-018-0604-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Complexity ; Computer Science ; Ergodic processes ; Inclusions ; Iterative methods ; Numeric Computing ; Numerical Analysis ; Original Paper ; Splitting ; Theory of Computation</subject><ispartof>Numerical algorithms, 2019-09, Vol.82 (1), p.263-295</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5f7e4722be9f14e2965a1d47a68204f2c233a5a7031cd804f66a1a6f39c835fd3</citedby><cites>FETCH-LOGICAL-c316t-5f7e4722be9f14e2965a1d47a68204f2c233a5a7031cd804f66a1a6f39c835fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-018-0604-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-018-0604-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Alves, M. Marques</creatorcontrib><creatorcontrib>Geremia, Marina</creatorcontrib><title>Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B four-operator splitting method for solving monotone inclusions</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>In this paper, we propose and study the iteration complexity of an inexact Douglas-Rachford splitting (DRS) method and a Douglas-Rachford-Tseng’s forward-backward (F-B) splitting method for solving two-operator and four-operator monotone inclusions, respectively. The former method (although based on a slightly different mechanism of iteration) is motivated by the recent work of J. Eckstein and W. Yao, in which an inexact DRS method is derived from a special instance of the hybrid proximal extragradient (HPE) method of Solodov and Svaiter, while the latter one combines the proposed inexact DRS method (used as an outer iteration) with a Tseng’s F-B splitting-type method (used as an inner iteration) for solving the corresponding subproblems. We prove iteration complexity bounds for both algorithms in the pointwise (non-ergodic) as well as in the ergodic sense by showing that they admit two different iterations: one that can be embedded into the HPE method, for which the iteration complexity is known since the work of Monteiro and Svaiter, and another one which demands a separate analysis. Finally, we perform simple numerical experiments to show the performance of the proposed methods when compared with other existing algorithms.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Ergodic processes</subject><subject>Inclusions</subject><subject>Iterative methods</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Splitting</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc9KxDAYxIsoqKsP4C3gOZovbZP26H-FBUHWc4hpUivdpCapuDdfw6Ov5pOY3VU8iKeE4TczH0yWHQA5AkL4cQAgvMQEKkwYKTBsZDtQcoprysrN9CfAMeR1tZ3thvBESHJRvpN93ETtZeycRcrNh16_dnGBnEHSos7qV6kiOndj28uA76R6NM43aK7jo2sS0qzIPwCeBW3bz7f3gC7xKTJu9NgNyx7nURj6LsbOtj8xZim6_mUlOeuiszp1q34M6aywl20Z2Qe9__1OsvvLi9nZNZ7eXt2cnUyxyoFFXBquC07pg64NFJrWrJTQFFyyipLCUEXzXJaSkxxUUyWFMQmSmbxWVV6aJp9kh-vcwbvnUYcontLdNlUKWkPFkr8oEwVrSnkXgtdGDL6bS78QQMRyCbFeQqQlxHIJAclD156QWNtq_5v8v-kLGiKPKQ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Alves, M. Marques</creator><creator>Geremia, Marina</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20190901</creationdate><title>Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B four-operator splitting method for solving monotone inclusions</title><author>Alves, M. Marques ; Geremia, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5f7e4722be9f14e2965a1d47a68204f2c233a5a7031cd804f66a1a6f39c835fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Ergodic processes</topic><topic>Inclusions</topic><topic>Iterative methods</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Splitting</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, M. Marques</creatorcontrib><creatorcontrib>Geremia, Marina</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, M. Marques</au><au>Geremia, Marina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B four-operator splitting method for solving monotone inclusions</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>82</volume><issue>1</issue><spage>263</spage><epage>295</epage><pages>263-295</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>In this paper, we propose and study the iteration complexity of an inexact Douglas-Rachford splitting (DRS) method and a Douglas-Rachford-Tseng’s forward-backward (F-B) splitting method for solving two-operator and four-operator monotone inclusions, respectively. The former method (although based on a slightly different mechanism of iteration) is motivated by the recent work of J. Eckstein and W. Yao, in which an inexact DRS method is derived from a special instance of the hybrid proximal extragradient (HPE) method of Solodov and Svaiter, while the latter one combines the proposed inexact DRS method (used as an outer iteration) with a Tseng’s F-B splitting-type method (used as an inner iteration) for solving the corresponding subproblems. We prove iteration complexity bounds for both algorithms in the pointwise (non-ergodic) as well as in the ergodic sense by showing that they admit two different iterations: one that can be embedded into the HPE method, for which the iteration complexity is known since the work of Monteiro and Svaiter, and another one which demands a separate analysis. Finally, we perform simple numerical experiments to show the performance of the proposed methods when compared with other existing algorithms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-018-0604-1</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2019-09, Vol.82 (1), p.263-295 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_journals_2918623345 |
source | SpringerLink Journals |
subjects | Algebra Algorithms Complexity Computer Science Ergodic processes Inclusions Iterative methods Numeric Computing Numerical Analysis Original Paper Splitting Theory of Computation |
title | Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B four-operator splitting method for solving monotone inclusions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iteration%20complexity%20of%20an%20inexact%20Douglas-Rachford%20method%20and%20of%20a%20Douglas-Rachford-Tseng%E2%80%99s%20F-B%20four-operator%20splitting%20method%20for%20solving%20monotone%20inclusions&rft.jtitle=Numerical%20algorithms&rft.au=Alves,%20M.%20Marques&rft.date=2019-09-01&rft.volume=82&rft.issue=1&rft.spage=263&rft.epage=295&rft.pages=263-295&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-018-0604-1&rft_dat=%3Cproquest_cross%3E2918623345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918623345&rft_id=info:pmid/&rfr_iscdi=true |