Iterative methods for solving proximal split minimization problems

In this paper, we propose two iterative algorithms for finding the minimum-norm solution of a split minimization problem. We prove strong convergence of the sequences generated by the proposed algorithms. The iterative schemes are proposed in such a way that the selection of the step-sizes does not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2018-05, Vol.78 (1), p.193-215
Hauptverfasser: Abbas, M., AlShahrani, M., Ansari, Q. H., Iyiola, O. S., Shehu, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue 1
container_start_page 193
container_title Numerical algorithms
container_volume 78
creator Abbas, M.
AlShahrani, M.
Ansari, Q. H.
Iyiola, O. S.
Shehu, Y.
description In this paper, we propose two iterative algorithms for finding the minimum-norm solution of a split minimization problem. We prove strong convergence of the sequences generated by the proposed algorithms. The iterative schemes are proposed in such a way that the selection of the step-sizes does not need any prior information about the operator norm. We further give some examples to numerically verify the efficiency and implementation of our new methods and compare the two algorithms presented. Our results act as supplements to several recent important results in this area.
doi_str_mv 10.1007/s11075-017-0372-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918621927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918621927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-cf4d57064abfb506d931f7f1e8f25fe7952b1b6318619fe7075b105d575de4f03</originalsourceid><addsrcrecordid>eNp1kEFPwzAMhSMEEmPwA7hV4lywk6VZjjDBmDSJC5yjdk1GprYZSTcBvx5XReLEybb8Pj_5MXaNcIsA6i4hgpI5oMpBKJ6LEzZBSY3mhTylftig0PNzdpHSDoAoribsYdXbWPb-aLPW9u-hTpkLMUuhOfpum-1j-PRt2WRp3_g-a33nW_9N-tANu6qxbbpkZ65skr36rVP29vT4unjO1y_L1eJ-nW8EFn2-cbNaKihmZeUqCUWtBTrl0M4dl84qLXmFVSFwXqCmmd6pECQxsrYzB2LKbsa7ZPxxsKk3u3CIHVkaroniqLkiFY6qTQwpRevMPtIH8csgmCEqM0ZlKBAzRGUEMXxkEmm7rY1_l_-HfgCyfGvv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918621927</pqid></control><display><type>article</type><title>Iterative methods for solving proximal split minimization problems</title><source>SpringerLink Journals</source><creator>Abbas, M. ; AlShahrani, M. ; Ansari, Q. H. ; Iyiola, O. S. ; Shehu, Y.</creator><creatorcontrib>Abbas, M. ; AlShahrani, M. ; Ansari, Q. H. ; Iyiola, O. S. ; Shehu, Y.</creatorcontrib><description>In this paper, we propose two iterative algorithms for finding the minimum-norm solution of a split minimization problem. We prove strong convergence of the sequences generated by the proposed algorithms. The iterative schemes are proposed in such a way that the selection of the step-sizes does not need any prior information about the operator norm. We further give some examples to numerically verify the efficiency and implementation of our new methods and compare the two algorithms presented. Our results act as supplements to several recent important results in this area.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-017-0372-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Science ; Hilbert space ; Iterative algorithms ; Iterative methods ; Mathematics ; Numeric Computing ; Numerical Analysis ; Optimization ; Original Paper ; Theory of Computation</subject><ispartof>Numerical algorithms, 2018-05, Vol.78 (1), p.193-215</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Springer Science+Business Media, LLC 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-cf4d57064abfb506d931f7f1e8f25fe7952b1b6318619fe7075b105d575de4f03</citedby><cites>FETCH-LOGICAL-c316t-cf4d57064abfb506d931f7f1e8f25fe7952b1b6318619fe7075b105d575de4f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-017-0372-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-017-0372-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Abbas, M.</creatorcontrib><creatorcontrib>AlShahrani, M.</creatorcontrib><creatorcontrib>Ansari, Q. H.</creatorcontrib><creatorcontrib>Iyiola, O. S.</creatorcontrib><creatorcontrib>Shehu, Y.</creatorcontrib><title>Iterative methods for solving proximal split minimization problems</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>In this paper, we propose two iterative algorithms for finding the minimum-norm solution of a split minimization problem. We prove strong convergence of the sequences generated by the proposed algorithms. The iterative schemes are proposed in such a way that the selection of the step-sizes does not need any prior information about the operator norm. We further give some examples to numerically verify the efficiency and implementation of our new methods and compare the two algorithms presented. Our results act as supplements to several recent important results in this area.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Hilbert space</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Mathematics</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEFPwzAMhSMEEmPwA7hV4lywk6VZjjDBmDSJC5yjdk1GprYZSTcBvx5XReLEybb8Pj_5MXaNcIsA6i4hgpI5oMpBKJ6LEzZBSY3mhTylftig0PNzdpHSDoAoribsYdXbWPb-aLPW9u-hTpkLMUuhOfpum-1j-PRt2WRp3_g-a33nW_9N-tANu6qxbbpkZ65skr36rVP29vT4unjO1y_L1eJ-nW8EFn2-cbNaKihmZeUqCUWtBTrl0M4dl84qLXmFVSFwXqCmmd6pECQxsrYzB2LKbsa7ZPxxsKk3u3CIHVkaroniqLkiFY6qTQwpRevMPtIH8csgmCEqM0ZlKBAzRGUEMXxkEmm7rY1_l_-HfgCyfGvv</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Abbas, M.</creator><creator>AlShahrani, M.</creator><creator>Ansari, Q. H.</creator><creator>Iyiola, O. S.</creator><creator>Shehu, Y.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20180501</creationdate><title>Iterative methods for solving proximal split minimization problems</title><author>Abbas, M. ; AlShahrani, M. ; Ansari, Q. H. ; Iyiola, O. S. ; Shehu, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-cf4d57064abfb506d931f7f1e8f25fe7952b1b6318619fe7075b105d575de4f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Hilbert space</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Mathematics</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbas, M.</creatorcontrib><creatorcontrib>AlShahrani, M.</creatorcontrib><creatorcontrib>Ansari, Q. H.</creatorcontrib><creatorcontrib>Iyiola, O. S.</creatorcontrib><creatorcontrib>Shehu, Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbas, M.</au><au>AlShahrani, M.</au><au>Ansari, Q. H.</au><au>Iyiola, O. S.</au><au>Shehu, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative methods for solving proximal split minimization problems</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>78</volume><issue>1</issue><spage>193</spage><epage>215</epage><pages>193-215</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>In this paper, we propose two iterative algorithms for finding the minimum-norm solution of a split minimization problem. We prove strong convergence of the sequences generated by the proposed algorithms. The iterative schemes are proposed in such a way that the selection of the step-sizes does not need any prior information about the operator norm. We further give some examples to numerically verify the efficiency and implementation of our new methods and compare the two algorithms presented. Our results act as supplements to several recent important results in this area.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-017-0372-3</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2018-05, Vol.78 (1), p.193-215
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918621927
source SpringerLink Journals
subjects Algebra
Algorithms
Computer Science
Hilbert space
Iterative algorithms
Iterative methods
Mathematics
Numeric Computing
Numerical Analysis
Optimization
Original Paper
Theory of Computation
title Iterative methods for solving proximal split minimization problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20methods%20for%20solving%20proximal%20split%20minimization%20problems&rft.jtitle=Numerical%20algorithms&rft.au=Abbas,%20M.&rft.date=2018-05-01&rft.volume=78&rft.issue=1&rft.spage=193&rft.epage=215&rft.pages=193-215&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-017-0372-3&rft_dat=%3Cproquest_cross%3E2918621927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918621927&rft_id=info:pmid/&rfr_iscdi=true