Iterative methods for solving proximal split minimization problems
In this paper, we propose two iterative algorithms for finding the minimum-norm solution of a split minimization problem. We prove strong convergence of the sequences generated by the proposed algorithms. The iterative schemes are proposed in such a way that the selection of the step-sizes does not...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2018-05, Vol.78 (1), p.193-215 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 215 |
---|---|
container_issue | 1 |
container_start_page | 193 |
container_title | Numerical algorithms |
container_volume | 78 |
creator | Abbas, M. AlShahrani, M. Ansari, Q. H. Iyiola, O. S. Shehu, Y. |
description | In this paper, we propose two iterative algorithms for finding the minimum-norm solution of a split minimization problem. We prove strong convergence of the sequences generated by the proposed algorithms. The iterative schemes are proposed in such a way that the selection of the step-sizes does not need any prior information about the operator norm. We further give some examples to numerically verify the efficiency and implementation of our new methods and compare the two algorithms presented. Our results act as supplements to several recent important results in this area. |
doi_str_mv | 10.1007/s11075-017-0372-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918621927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918621927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-cf4d57064abfb506d931f7f1e8f25fe7952b1b6318619fe7075b105d575de4f03</originalsourceid><addsrcrecordid>eNp1kEFPwzAMhSMEEmPwA7hV4lywk6VZjjDBmDSJC5yjdk1GprYZSTcBvx5XReLEybb8Pj_5MXaNcIsA6i4hgpI5oMpBKJ6LEzZBSY3mhTylftig0PNzdpHSDoAoribsYdXbWPb-aLPW9u-hTpkLMUuhOfpum-1j-PRt2WRp3_g-a33nW_9N-tANu6qxbbpkZ65skr36rVP29vT4unjO1y_L1eJ-nW8EFn2-cbNaKihmZeUqCUWtBTrl0M4dl84qLXmFVSFwXqCmmd6pECQxsrYzB2LKbsa7ZPxxsKk3u3CIHVkaroniqLkiFY6qTQwpRevMPtIH8csgmCEqM0ZlKBAzRGUEMXxkEmm7rY1_l_-HfgCyfGvv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918621927</pqid></control><display><type>article</type><title>Iterative methods for solving proximal split minimization problems</title><source>SpringerLink Journals</source><creator>Abbas, M. ; AlShahrani, M. ; Ansari, Q. H. ; Iyiola, O. S. ; Shehu, Y.</creator><creatorcontrib>Abbas, M. ; AlShahrani, M. ; Ansari, Q. H. ; Iyiola, O. S. ; Shehu, Y.</creatorcontrib><description>In this paper, we propose two iterative algorithms for finding the minimum-norm solution of a split minimization problem. We prove strong convergence of the sequences generated by the proposed algorithms. The iterative schemes are proposed in such a way that the selection of the step-sizes does not need any prior information about the operator norm. We further give some examples to numerically verify the efficiency and implementation of our new methods and compare the two algorithms presented. Our results act as supplements to several recent important results in this area.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-017-0372-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Science ; Hilbert space ; Iterative algorithms ; Iterative methods ; Mathematics ; Numeric Computing ; Numerical Analysis ; Optimization ; Original Paper ; Theory of Computation</subject><ispartof>Numerical algorithms, 2018-05, Vol.78 (1), p.193-215</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Springer Science+Business Media, LLC 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-cf4d57064abfb506d931f7f1e8f25fe7952b1b6318619fe7075b105d575de4f03</citedby><cites>FETCH-LOGICAL-c316t-cf4d57064abfb506d931f7f1e8f25fe7952b1b6318619fe7075b105d575de4f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-017-0372-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-017-0372-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Abbas, M.</creatorcontrib><creatorcontrib>AlShahrani, M.</creatorcontrib><creatorcontrib>Ansari, Q. H.</creatorcontrib><creatorcontrib>Iyiola, O. S.</creatorcontrib><creatorcontrib>Shehu, Y.</creatorcontrib><title>Iterative methods for solving proximal split minimization problems</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>In this paper, we propose two iterative algorithms for finding the minimum-norm solution of a split minimization problem. We prove strong convergence of the sequences generated by the proposed algorithms. The iterative schemes are proposed in such a way that the selection of the step-sizes does not need any prior information about the operator norm. We further give some examples to numerically verify the efficiency and implementation of our new methods and compare the two algorithms presented. Our results act as supplements to several recent important results in this area.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Hilbert space</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Mathematics</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEFPwzAMhSMEEmPwA7hV4lywk6VZjjDBmDSJC5yjdk1GprYZSTcBvx5XReLEybb8Pj_5MXaNcIsA6i4hgpI5oMpBKJ6LEzZBSY3mhTylftig0PNzdpHSDoAoribsYdXbWPb-aLPW9u-hTpkLMUuhOfpum-1j-PRt2WRp3_g-a33nW_9N-tANu6qxbbpkZ65skr36rVP29vT4unjO1y_L1eJ-nW8EFn2-cbNaKihmZeUqCUWtBTrl0M4dl84qLXmFVSFwXqCmmd6pECQxsrYzB2LKbsa7ZPxxsKk3u3CIHVkaroniqLkiFY6qTQwpRevMPtIH8csgmCEqM0ZlKBAzRGUEMXxkEmm7rY1_l_-HfgCyfGvv</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Abbas, M.</creator><creator>AlShahrani, M.</creator><creator>Ansari, Q. H.</creator><creator>Iyiola, O. S.</creator><creator>Shehu, Y.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20180501</creationdate><title>Iterative methods for solving proximal split minimization problems</title><author>Abbas, M. ; AlShahrani, M. ; Ansari, Q. H. ; Iyiola, O. S. ; Shehu, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-cf4d57064abfb506d931f7f1e8f25fe7952b1b6318619fe7075b105d575de4f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Hilbert space</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Mathematics</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbas, M.</creatorcontrib><creatorcontrib>AlShahrani, M.</creatorcontrib><creatorcontrib>Ansari, Q. H.</creatorcontrib><creatorcontrib>Iyiola, O. S.</creatorcontrib><creatorcontrib>Shehu, Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbas, M.</au><au>AlShahrani, M.</au><au>Ansari, Q. H.</au><au>Iyiola, O. S.</au><au>Shehu, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative methods for solving proximal split minimization problems</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>78</volume><issue>1</issue><spage>193</spage><epage>215</epage><pages>193-215</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>In this paper, we propose two iterative algorithms for finding the minimum-norm solution of a split minimization problem. We prove strong convergence of the sequences generated by the proposed algorithms. The iterative schemes are proposed in such a way that the selection of the step-sizes does not need any prior information about the operator norm. We further give some examples to numerically verify the efficiency and implementation of our new methods and compare the two algorithms presented. Our results act as supplements to several recent important results in this area.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-017-0372-3</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2018-05, Vol.78 (1), p.193-215 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_journals_2918621927 |
source | SpringerLink Journals |
subjects | Algebra Algorithms Computer Science Hilbert space Iterative algorithms Iterative methods Mathematics Numeric Computing Numerical Analysis Optimization Original Paper Theory of Computation |
title | Iterative methods for solving proximal split minimization problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20methods%20for%20solving%20proximal%20split%20minimization%20problems&rft.jtitle=Numerical%20algorithms&rft.au=Abbas,%20M.&rft.date=2018-05-01&rft.volume=78&rft.issue=1&rft.spage=193&rft.epage=215&rft.pages=193-215&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-017-0372-3&rft_dat=%3Cproquest_cross%3E2918621927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918621927&rft_id=info:pmid/&rfr_iscdi=true |