An effective implementation of a modified Laguerre method for the roots of a polynomial
Two common strategies for computing all roots of a polynomial with Laguerre’s method are explicit deflation and Maehly’s procedure. The former is only a semi-stable process and is not suitable for solving large degree polynomial equations. In contrast, the latter implicitly deflates the polynomial u...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2019-11, Vol.82 (3), p.1065-1084 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1084 |
---|---|
container_issue | 3 |
container_start_page | 1065 |
container_title | Numerical algorithms |
container_volume | 82 |
creator | Cameron, Thomas R. |
description | Two common strategies for computing all roots of a polynomial with Laguerre’s method are explicit deflation and Maehly’s procedure. The former is only a semi-stable process and is not suitable for solving large degree polynomial equations. In contrast, the latter implicitly deflates the polynomial using previously accepted roots and is, therefore, a more practical strategy for solving large degree polynomial equations. However, since the roots of a polynomial are computed sequentially, this method cannot take advantage of parallel systems. In this article, we present an implementation of a modified Laguerre method for the simultaneous approximation of all roots of a polynomial. We provide a derivation of this method along with a detailed analysis of our algorithm’s initial estimates, stopping criterion, and stability. Finally, the results of several numerical experiments are provided to verify our analysis and the effectiveness of our algorithm. |
doi_str_mv | 10.1007/s11075-018-0641-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918621508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918621508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-39995e0fb16e46dba37596c278417a24bca862c6a545e65b86dd7111ce8722343</originalsourceid><addsrcrecordid>eNp1kE1LxDAQQIsouK7-AG8Bz9VM2nwdl8UvWPCieAxpO9nt0jY1yQr77-1SwZOnmcN7M_Cy7BboPVAqHyIAlTynoHIqSsj1WbYALlmumeDn005B5lBodZldxbindLKYXGSfq4Ggc1in9htJ248d9jgkm1o_EO-IJb1vWtdiQzZ2e8AQkPSYdr4hzgeSdkiC9ynO7Oi74-D71nbX2YWzXcSb37nMPp4e39cv-ebt-XW92uQ1EyrlhdaaI3UVCCxFU9lCci1qJlUJ0rKyqq0SrBaWlxwFr5RoGgkANSrJWFEWy-xuvjsG_3XAmMzeH8IwvTRMw-QCp2qiYKbq4GMM6MwY2t6GowFqTv3M3M9M_cypn9GTw2YnTuywxfB3-X_pB9Nkcfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918621508</pqid></control><display><type>article</type><title>An effective implementation of a modified Laguerre method for the roots of a polynomial</title><source>SpringerNature Journals</source><creator>Cameron, Thomas R.</creator><creatorcontrib>Cameron, Thomas R.</creatorcontrib><description>Two common strategies for computing all roots of a polynomial with Laguerre’s method are explicit deflation and Maehly’s procedure. The former is only a semi-stable process and is not suitable for solving large degree polynomial equations. In contrast, the latter implicitly deflates the polynomial using previously accepted roots and is, therefore, a more practical strategy for solving large degree polynomial equations. However, since the roots of a polynomial are computed sequentially, this method cannot take advantage of parallel systems. In this article, we present an implementation of a modified Laguerre method for the simultaneous approximation of all roots of a polynomial. We provide a derivation of this method along with a detailed analysis of our algorithm’s initial estimates, stopping criterion, and stability. Finally, the results of several numerical experiments are provided to verify our analysis and the effectiveness of our algorithm.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-018-0641-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Approximation ; Computer Science ; Convergence ; Eigenvalues ; Mathematical analysis ; Methods ; Numeric Computing ; Numerical Analysis ; Original Paper ; Polynomials ; Software ; Stability analysis ; Stability criteria ; Theory of Computation ; Workloads</subject><ispartof>Numerical algorithms, 2019-11, Vol.82 (3), p.1065-1084</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-39995e0fb16e46dba37596c278417a24bca862c6a545e65b86dd7111ce8722343</cites><orcidid>0000-0002-8708-4336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-018-0641-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-018-0641-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cameron, Thomas R.</creatorcontrib><title>An effective implementation of a modified Laguerre method for the roots of a polynomial</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>Two common strategies for computing all roots of a polynomial with Laguerre’s method are explicit deflation and Maehly’s procedure. The former is only a semi-stable process and is not suitable for solving large degree polynomial equations. In contrast, the latter implicitly deflates the polynomial using previously accepted roots and is, therefore, a more practical strategy for solving large degree polynomial equations. However, since the roots of a polynomial are computed sequentially, this method cannot take advantage of parallel systems. In this article, we present an implementation of a modified Laguerre method for the simultaneous approximation of all roots of a polynomial. We provide a derivation of this method along with a detailed analysis of our algorithm’s initial estimates, stopping criterion, and stability. Finally, the results of several numerical experiments are provided to verify our analysis and the effectiveness of our algorithm.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Eigenvalues</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Software</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Theory of Computation</subject><subject>Workloads</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQQIsouK7-AG8Bz9VM2nwdl8UvWPCieAxpO9nt0jY1yQr77-1SwZOnmcN7M_Cy7BboPVAqHyIAlTynoHIqSsj1WbYALlmumeDn005B5lBodZldxbindLKYXGSfq4Ggc1in9htJ248d9jgkm1o_EO-IJb1vWtdiQzZ2e8AQkPSYdr4hzgeSdkiC9ynO7Oi74-D71nbX2YWzXcSb37nMPp4e39cv-ebt-XW92uQ1EyrlhdaaI3UVCCxFU9lCci1qJlUJ0rKyqq0SrBaWlxwFr5RoGgkANSrJWFEWy-xuvjsG_3XAmMzeH8IwvTRMw-QCp2qiYKbq4GMM6MwY2t6GowFqTv3M3M9M_cypn9GTw2YnTuywxfB3-X_pB9Nkcfg</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Cameron, Thomas R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8708-4336</orcidid></search><sort><creationdate>20191101</creationdate><title>An effective implementation of a modified Laguerre method for the roots of a polynomial</title><author>Cameron, Thomas R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-39995e0fb16e46dba37596c278417a24bca862c6a545e65b86dd7111ce8722343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Eigenvalues</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Software</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Theory of Computation</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cameron, Thomas R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cameron, Thomas R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective implementation of a modified Laguerre method for the roots of a polynomial</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>82</volume><issue>3</issue><spage>1065</spage><epage>1084</epage><pages>1065-1084</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>Two common strategies for computing all roots of a polynomial with Laguerre’s method are explicit deflation and Maehly’s procedure. The former is only a semi-stable process and is not suitable for solving large degree polynomial equations. In contrast, the latter implicitly deflates the polynomial using previously accepted roots and is, therefore, a more practical strategy for solving large degree polynomial equations. However, since the roots of a polynomial are computed sequentially, this method cannot take advantage of parallel systems. In this article, we present an implementation of a modified Laguerre method for the simultaneous approximation of all roots of a polynomial. We provide a derivation of this method along with a detailed analysis of our algorithm’s initial estimates, stopping criterion, and stability. Finally, the results of several numerical experiments are provided to verify our analysis and the effectiveness of our algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-018-0641-9</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8708-4336</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2019-11, Vol.82 (3), p.1065-1084 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_journals_2918621508 |
source | SpringerNature Journals |
subjects | Algebra Algorithms Approximation Computer Science Convergence Eigenvalues Mathematical analysis Methods Numeric Computing Numerical Analysis Original Paper Polynomials Software Stability analysis Stability criteria Theory of Computation Workloads |
title | An effective implementation of a modified Laguerre method for the roots of a polynomial |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20implementation%20of%20a%20modified%20Laguerre%20method%20for%20the%20roots%20of%20a%20polynomial&rft.jtitle=Numerical%20algorithms&rft.au=Cameron,%20Thomas%20R.&rft.date=2019-11-01&rft.volume=82&rft.issue=3&rft.spage=1065&rft.epage=1084&rft.pages=1065-1084&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-018-0641-9&rft_dat=%3Cproquest_cross%3E2918621508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918621508&rft_id=info:pmid/&rfr_iscdi=true |