An effective implementation of a modified Laguerre method for the roots of a polynomial

Two common strategies for computing all roots of a polynomial with Laguerre’s method are explicit deflation and Maehly’s procedure. The former is only a semi-stable process and is not suitable for solving large degree polynomial equations. In contrast, the latter implicitly deflates the polynomial u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2019-11, Vol.82 (3), p.1065-1084
1. Verfasser: Cameron, Thomas R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1084
container_issue 3
container_start_page 1065
container_title Numerical algorithms
container_volume 82
creator Cameron, Thomas R.
description Two common strategies for computing all roots of a polynomial with Laguerre’s method are explicit deflation and Maehly’s procedure. The former is only a semi-stable process and is not suitable for solving large degree polynomial equations. In contrast, the latter implicitly deflates the polynomial using previously accepted roots and is, therefore, a more practical strategy for solving large degree polynomial equations. However, since the roots of a polynomial are computed sequentially, this method cannot take advantage of parallel systems. In this article, we present an implementation of a modified Laguerre method for the simultaneous approximation of all roots of a polynomial. We provide a derivation of this method along with a detailed analysis of our algorithm’s initial estimates, stopping criterion, and stability. Finally, the results of several numerical experiments are provided to verify our analysis and the effectiveness of our algorithm.
doi_str_mv 10.1007/s11075-018-0641-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918621508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918621508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-39995e0fb16e46dba37596c278417a24bca862c6a545e65b86dd7111ce8722343</originalsourceid><addsrcrecordid>eNp1kE1LxDAQQIsouK7-AG8Bz9VM2nwdl8UvWPCieAxpO9nt0jY1yQr77-1SwZOnmcN7M_Cy7BboPVAqHyIAlTynoHIqSsj1WbYALlmumeDn005B5lBodZldxbindLKYXGSfq4Ggc1in9htJ248d9jgkm1o_EO-IJb1vWtdiQzZ2e8AQkPSYdr4hzgeSdkiC9ynO7Oi74-D71nbX2YWzXcSb37nMPp4e39cv-ebt-XW92uQ1EyrlhdaaI3UVCCxFU9lCci1qJlUJ0rKyqq0SrBaWlxwFr5RoGgkANSrJWFEWy-xuvjsG_3XAmMzeH8IwvTRMw-QCp2qiYKbq4GMM6MwY2t6GowFqTv3M3M9M_cypn9GTw2YnTuywxfB3-X_pB9Nkcfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918621508</pqid></control><display><type>article</type><title>An effective implementation of a modified Laguerre method for the roots of a polynomial</title><source>SpringerNature Journals</source><creator>Cameron, Thomas R.</creator><creatorcontrib>Cameron, Thomas R.</creatorcontrib><description>Two common strategies for computing all roots of a polynomial with Laguerre’s method are explicit deflation and Maehly’s procedure. The former is only a semi-stable process and is not suitable for solving large degree polynomial equations. In contrast, the latter implicitly deflates the polynomial using previously accepted roots and is, therefore, a more practical strategy for solving large degree polynomial equations. However, since the roots of a polynomial are computed sequentially, this method cannot take advantage of parallel systems. In this article, we present an implementation of a modified Laguerre method for the simultaneous approximation of all roots of a polynomial. We provide a derivation of this method along with a detailed analysis of our algorithm’s initial estimates, stopping criterion, and stability. Finally, the results of several numerical experiments are provided to verify our analysis and the effectiveness of our algorithm.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-018-0641-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Approximation ; Computer Science ; Convergence ; Eigenvalues ; Mathematical analysis ; Methods ; Numeric Computing ; Numerical Analysis ; Original Paper ; Polynomials ; Software ; Stability analysis ; Stability criteria ; Theory of Computation ; Workloads</subject><ispartof>Numerical algorithms, 2019-11, Vol.82 (3), p.1065-1084</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-39995e0fb16e46dba37596c278417a24bca862c6a545e65b86dd7111ce8722343</cites><orcidid>0000-0002-8708-4336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-018-0641-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-018-0641-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cameron, Thomas R.</creatorcontrib><title>An effective implementation of a modified Laguerre method for the roots of a polynomial</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>Two common strategies for computing all roots of a polynomial with Laguerre’s method are explicit deflation and Maehly’s procedure. The former is only a semi-stable process and is not suitable for solving large degree polynomial equations. In contrast, the latter implicitly deflates the polynomial using previously accepted roots and is, therefore, a more practical strategy for solving large degree polynomial equations. However, since the roots of a polynomial are computed sequentially, this method cannot take advantage of parallel systems. In this article, we present an implementation of a modified Laguerre method for the simultaneous approximation of all roots of a polynomial. We provide a derivation of this method along with a detailed analysis of our algorithm’s initial estimates, stopping criterion, and stability. Finally, the results of several numerical experiments are provided to verify our analysis and the effectiveness of our algorithm.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Eigenvalues</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Software</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Theory of Computation</subject><subject>Workloads</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQQIsouK7-AG8Bz9VM2nwdl8UvWPCieAxpO9nt0jY1yQr77-1SwZOnmcN7M_Cy7BboPVAqHyIAlTynoHIqSsj1WbYALlmumeDn005B5lBodZldxbindLKYXGSfq4Ggc1in9htJ248d9jgkm1o_EO-IJb1vWtdiQzZ2e8AQkPSYdr4hzgeSdkiC9ynO7Oi74-D71nbX2YWzXcSb37nMPp4e39cv-ebt-XW92uQ1EyrlhdaaI3UVCCxFU9lCci1qJlUJ0rKyqq0SrBaWlxwFr5RoGgkANSrJWFEWy-xuvjsG_3XAmMzeH8IwvTRMw-QCp2qiYKbq4GMM6MwY2t6GowFqTv3M3M9M_cypn9GTw2YnTuywxfB3-X_pB9Nkcfg</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Cameron, Thomas R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8708-4336</orcidid></search><sort><creationdate>20191101</creationdate><title>An effective implementation of a modified Laguerre method for the roots of a polynomial</title><author>Cameron, Thomas R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-39995e0fb16e46dba37596c278417a24bca862c6a545e65b86dd7111ce8722343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Eigenvalues</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Software</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Theory of Computation</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cameron, Thomas R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cameron, Thomas R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective implementation of a modified Laguerre method for the roots of a polynomial</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>82</volume><issue>3</issue><spage>1065</spage><epage>1084</epage><pages>1065-1084</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>Two common strategies for computing all roots of a polynomial with Laguerre’s method are explicit deflation and Maehly’s procedure. The former is only a semi-stable process and is not suitable for solving large degree polynomial equations. In contrast, the latter implicitly deflates the polynomial using previously accepted roots and is, therefore, a more practical strategy for solving large degree polynomial equations. However, since the roots of a polynomial are computed sequentially, this method cannot take advantage of parallel systems. In this article, we present an implementation of a modified Laguerre method for the simultaneous approximation of all roots of a polynomial. We provide a derivation of this method along with a detailed analysis of our algorithm’s initial estimates, stopping criterion, and stability. Finally, the results of several numerical experiments are provided to verify our analysis and the effectiveness of our algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-018-0641-9</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8708-4336</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2019-11, Vol.82 (3), p.1065-1084
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918621508
source SpringerNature Journals
subjects Algebra
Algorithms
Approximation
Computer Science
Convergence
Eigenvalues
Mathematical analysis
Methods
Numeric Computing
Numerical Analysis
Original Paper
Polynomials
Software
Stability analysis
Stability criteria
Theory of Computation
Workloads
title An effective implementation of a modified Laguerre method for the roots of a polynomial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20implementation%20of%20a%20modified%20Laguerre%20method%20for%20the%20roots%20of%20a%20polynomial&rft.jtitle=Numerical%20algorithms&rft.au=Cameron,%20Thomas%20R.&rft.date=2019-11-01&rft.volume=82&rft.issue=3&rft.spage=1065&rft.epage=1084&rft.pages=1065-1084&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-018-0641-9&rft_dat=%3Cproquest_cross%3E2918621508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918621508&rft_id=info:pmid/&rfr_iscdi=true