Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs

The mean fixation time is often not accurate for describing the timescales of fixation probabilities of evolutionary games taking place on complex networks. We simulate the game dynamics on top of complex network topologies and approximate the fixation time distributions using a mean-field approach....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of physics 2018-02, Vol.13 (1), p.215-224, Article 130201
Hauptverfasser: Ying, Li-Min, Zhou, Jie, Tang, Ming, Guan, Shu-Guang, Zou, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mean fixation time is often not accurate for describing the timescales of fixation probabilities of evolutionary games taking place on complex networks. We simulate the game dynamics on top of complex network topologies and approximate the fixation time distributions using a mean-field approach. We assume that there are two absorbing states. Numerically, we show that the mean fixation time is sufficient in characterizing the evolutionary timescales when network structures are close to the well-mixing condition. In contrast, the mean fixation time shows large inaccuracies when networks become sparse. The approximation accuracy is determined by the network structure, and hence by the suitability of the mean-field approach. The numerical results show good agreement with the theoretical predictions.
ISSN:2095-0462
2095-0470
DOI:10.1007/s11467-017-0698-2