Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects

Chiral anomaly-induced negative magnetoresistance (NMR) has been widely used as critical transport evidence for the existence of Weyl fermions in topological semimetals. In this mini-review, we discuss the general observation of NMR phenomena in non-centrosymmetric NbP and NbAs. We show that NMR can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of physics 2017-06, Vol.12 (3), p.19-28, Article 127205
Hauptverfasser: Li, Yupeng, Wang, Zhen, Li, Pengshan, Yang, Xiaojun, Shen, Zhixuan, Sheng, Feng, Li, Xiaodong, Lu, Yunhao, Zheng, Yi, Xu, Zhu-An
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 3
container_start_page 19
container_title Frontiers of physics
container_volume 12
creator Li, Yupeng
Wang, Zhen
Li, Pengshan
Yang, Xiaojun
Shen, Zhixuan
Sheng, Feng
Li, Xiaodong
Lu, Yunhao
Zheng, Yi
Xu, Zhu-An
description Chiral anomaly-induced negative magnetoresistance (NMR) has been widely used as critical transport evidence for the existence of Weyl fermions in topological semimetals. In this mini-review, we discuss the general observation of NMR phenomena in non-centrosymmetric NbP and NbAs. We show that NMR can arise from the intrinsic chiral anomaly of Weyl fermions and/or extrinsic effects, such as the superimposition of Hall signals; field-dependent inhomogeneous current flow in the bulk, i.e., current jetting; and weak localization (WL) of coexistent trivial carriers. The WL-controlled NMR is heavily dependent on sample quality and is characterized by a pronounced crossover from positive to negative MR growth at elevated temperatures, resulting from the competition between the phase coherence time and the spin-orbital scattering constant of the bulk trivial pockets. Thus, the correlation between the NMR and the chiral anomaly need to be scrutinized without the support of complimentary techniques. Because of the lifting of spin degeneracy, the spin orientations of Weyl fermions are either parallel or antiparallel to the momentum, which is a unique physical property known as helicity. The conservation of helicity provides strong protection for the transport of Weyl fermions, which can only be effectively scattered by magnetic impurities. Chemical doping with magnetic and non-magnetic impurities is thus more convincing than the NMR method for detecting the existence of Weyl fermions.
doi_str_mv 10.1007/s11467-016-0636-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918619095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>672353981</cqvip_id><sourcerecordid>2918619095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-ec752bc1ac065e44df678bc764bc87db88d0926b1287f83fa7cd39ffe2d7974f3</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhiMEElXhAOwiWAdsJ7GdJUI8KlWFBYil5Tjj1ChxWtsgehXOwp24Aobw2HXlseZ_jL4kOcLoFCPEzjzGBWUZwjRDNKcZ30kmBFVlhgqGdv9mSvaTQ--fEEIYsyL-J0m3gFYG8wJpL1sLYXDgjQ_SKkiNTR9h06UeetNDkJ1PF_W5T6Vt4nD38f6WzmxwxnqjUrU0TnZxN_Sy23xr4PV3CVqDCv4g2dMxBQ5_3mnycHV5f3GTzW-vZxfn80zlFQkZKFaSWmGpEC2hKBpNGa8Vo0WtOGtqzhtUEVpjwpnmuZZMNXkVK0jDKlbofJqcjLkrN6yfwQfxNDw7GysFqTCnuIpAogqPKuUG7x1osXKml24jMBJfXMXIVUSu4our4NFDRo-PWtuC-0_eZuKjaWnaJThoVhGyF9oNNhhw263HPzcuB9uuY-XfkZSRvMwrjvNPtKuazA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918619095</pqid></control><display><type>article</type><title>Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects</title><source>AUTh Library subscriptions: ProQuest Central</source><source>SpringerLink (Online service)</source><creator>Li, Yupeng ; Wang, Zhen ; Li, Pengshan ; Yang, Xiaojun ; Shen, Zhixuan ; Sheng, Feng ; Li, Xiaodong ; Lu, Yunhao ; Zheng, Yi ; Xu, Zhu-An</creator><creatorcontrib>Li, Yupeng ; Wang, Zhen ; Li, Pengshan ; Yang, Xiaojun ; Shen, Zhixuan ; Sheng, Feng ; Li, Xiaodong ; Lu, Yunhao ; Zheng, Yi ; Xu, Zhu-An</creatorcontrib><description>Chiral anomaly-induced negative magnetoresistance (NMR) has been widely used as critical transport evidence for the existence of Weyl fermions in topological semimetals. In this mini-review, we discuss the general observation of NMR phenomena in non-centrosymmetric NbP and NbAs. We show that NMR can arise from the intrinsic chiral anomaly of Weyl fermions and/or extrinsic effects, such as the superimposition of Hall signals; field-dependent inhomogeneous current flow in the bulk, i.e., current jetting; and weak localization (WL) of coexistent trivial carriers. The WL-controlled NMR is heavily dependent on sample quality and is characterized by a pronounced crossover from positive to negative MR growth at elevated temperatures, resulting from the competition between the phase coherence time and the spin-orbital scattering constant of the bulk trivial pockets. Thus, the correlation between the NMR and the chiral anomaly need to be scrutinized without the support of complimentary techniques. Because of the lifting of spin degeneracy, the spin orientations of Weyl fermions are either parallel or antiparallel to the momentum, which is a unique physical property known as helicity. The conservation of helicity provides strong protection for the transport of Weyl fermions, which can only be effectively scattered by magnetic impurities. Chemical doping with magnetic and non-magnetic impurities is thus more convincing than the NMR method for detecting the existence of Weyl fermions.</description><identifier>ISSN: 2095-0462</identifier><identifier>EISSN: 2095-0470</identifier><identifier>DOI: 10.1007/s11467-016-0636-8</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Atomic ; chiral anomaly ; Coherent scattering ; Condensed Matter Physics ; Electrons ; extrinsic effects ; Fermions ; Graphene ; Helicity ; High temperature ; Impurities ; Localization ; Magnetic fields ; Magnetoresistance ; Magnetoresistivity ; Metalloids ; Molecular ; NBA ; NBP ; negative magnetoresistance ; NMR ; Nuclear magnetic resonance ; Optical and Plasma Physics ; Orbital scattering ; Particle and Nuclear Physics ; Phase coherence ; Physics ; Physics and Astronomy ; Recent Progress on Weyl Semimetals ; Review Article ; Symmetry ; Weyl semimetals ; 半金属 ; 异常 ; 手性 ; 核磁共振 ; 自旋轨道 ; 负磁阻效应</subject><ispartof>Frontiers of physics, 2017-06, Vol.12 (3), p.19-28, Article 127205</ispartof><rights>Copyright reserved, 2017, Higher Education Press and Springer-Verlag Berlin Heidelberg</rights><rights>Higher Education Press and Springer-Verlag GmbH Germany 2017</rights><rights>Higher Education Press and Springer-Verlag GmbH Germany 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-ec752bc1ac065e44df678bc764bc87db88d0926b1287f83fa7cd39ffe2d7974f3</citedby><cites>FETCH-LOGICAL-c392t-ec752bc1ac065e44df678bc764bc87db88d0926b1287f83fa7cd39ffe2d7974f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71009X/71009X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11467-016-0636-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918619095?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Li, Yupeng</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Li, Pengshan</creatorcontrib><creatorcontrib>Yang, Xiaojun</creatorcontrib><creatorcontrib>Shen, Zhixuan</creatorcontrib><creatorcontrib>Sheng, Feng</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Lu, Yunhao</creatorcontrib><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Xu, Zhu-An</creatorcontrib><title>Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects</title><title>Frontiers of physics</title><addtitle>Front. Phys</addtitle><addtitle>Frontiers of Physics in China</addtitle><description>Chiral anomaly-induced negative magnetoresistance (NMR) has been widely used as critical transport evidence for the existence of Weyl fermions in topological semimetals. In this mini-review, we discuss the general observation of NMR phenomena in non-centrosymmetric NbP and NbAs. We show that NMR can arise from the intrinsic chiral anomaly of Weyl fermions and/or extrinsic effects, such as the superimposition of Hall signals; field-dependent inhomogeneous current flow in the bulk, i.e., current jetting; and weak localization (WL) of coexistent trivial carriers. The WL-controlled NMR is heavily dependent on sample quality and is characterized by a pronounced crossover from positive to negative MR growth at elevated temperatures, resulting from the competition between the phase coherence time and the spin-orbital scattering constant of the bulk trivial pockets. Thus, the correlation between the NMR and the chiral anomaly need to be scrutinized without the support of complimentary techniques. Because of the lifting of spin degeneracy, the spin orientations of Weyl fermions are either parallel or antiparallel to the momentum, which is a unique physical property known as helicity. The conservation of helicity provides strong protection for the transport of Weyl fermions, which can only be effectively scattered by magnetic impurities. Chemical doping with magnetic and non-magnetic impurities is thus more convincing than the NMR method for detecting the existence of Weyl fermions.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Atomic</subject><subject>chiral anomaly</subject><subject>Coherent scattering</subject><subject>Condensed Matter Physics</subject><subject>Electrons</subject><subject>extrinsic effects</subject><subject>Fermions</subject><subject>Graphene</subject><subject>Helicity</subject><subject>High temperature</subject><subject>Impurities</subject><subject>Localization</subject><subject>Magnetic fields</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Metalloids</subject><subject>Molecular</subject><subject>NBA</subject><subject>NBP</subject><subject>negative magnetoresistance</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optical and Plasma Physics</subject><subject>Orbital scattering</subject><subject>Particle and Nuclear Physics</subject><subject>Phase coherence</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Recent Progress on Weyl Semimetals</subject><subject>Review Article</subject><subject>Symmetry</subject><subject>Weyl semimetals</subject><subject>半金属</subject><subject>异常</subject><subject>手性</subject><subject>核磁共振</subject><subject>自旋轨道</subject><subject>负磁阻效应</subject><issn>2095-0462</issn><issn>2095-0470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtOwzAQhiMEElXhAOwiWAdsJ7GdJUI8KlWFBYil5Tjj1ChxWtsgehXOwp24Aobw2HXlseZ_jL4kOcLoFCPEzjzGBWUZwjRDNKcZ30kmBFVlhgqGdv9mSvaTQ--fEEIYsyL-J0m3gFYG8wJpL1sLYXDgjQ_SKkiNTR9h06UeetNDkJ1PF_W5T6Vt4nD38f6WzmxwxnqjUrU0TnZxN_Sy23xr4PV3CVqDCv4g2dMxBQ5_3mnycHV5f3GTzW-vZxfn80zlFQkZKFaSWmGpEC2hKBpNGa8Vo0WtOGtqzhtUEVpjwpnmuZZMNXkVK0jDKlbofJqcjLkrN6yfwQfxNDw7GysFqTCnuIpAogqPKuUG7x1osXKml24jMBJfXMXIVUSu4our4NFDRo-PWtuC-0_eZuKjaWnaJThoVhGyF9oNNhhw263HPzcuB9uuY-XfkZSRvMwrjvNPtKuazA</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Li, Yupeng</creator><creator>Wang, Zhen</creator><creator>Li, Pengshan</creator><creator>Yang, Xiaojun</creator><creator>Shen, Zhixuan</creator><creator>Sheng, Feng</creator><creator>Li, Xiaodong</creator><creator>Lu, Yunhao</creator><creator>Zheng, Yi</creator><creator>Xu, Zhu-An</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20170601</creationdate><title>Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects</title><author>Li, Yupeng ; Wang, Zhen ; Li, Pengshan ; Yang, Xiaojun ; Shen, Zhixuan ; Sheng, Feng ; Li, Xiaodong ; Lu, Yunhao ; Zheng, Yi ; Xu, Zhu-An</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-ec752bc1ac065e44df678bc764bc87db88d0926b1287f83fa7cd39ffe2d7974f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Atomic</topic><topic>chiral anomaly</topic><topic>Coherent scattering</topic><topic>Condensed Matter Physics</topic><topic>Electrons</topic><topic>extrinsic effects</topic><topic>Fermions</topic><topic>Graphene</topic><topic>Helicity</topic><topic>High temperature</topic><topic>Impurities</topic><topic>Localization</topic><topic>Magnetic fields</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Metalloids</topic><topic>Molecular</topic><topic>NBA</topic><topic>NBP</topic><topic>negative magnetoresistance</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optical and Plasma Physics</topic><topic>Orbital scattering</topic><topic>Particle and Nuclear Physics</topic><topic>Phase coherence</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Recent Progress on Weyl Semimetals</topic><topic>Review Article</topic><topic>Symmetry</topic><topic>Weyl semimetals</topic><topic>半金属</topic><topic>异常</topic><topic>手性</topic><topic>核磁共振</topic><topic>自旋轨道</topic><topic>负磁阻效应</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yupeng</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Li, Pengshan</creatorcontrib><creatorcontrib>Yang, Xiaojun</creatorcontrib><creatorcontrib>Shen, Zhixuan</creatorcontrib><creatorcontrib>Sheng, Feng</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Lu, Yunhao</creatorcontrib><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Xu, Zhu-An</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Frontiers of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yupeng</au><au>Wang, Zhen</au><au>Li, Pengshan</au><au>Yang, Xiaojun</au><au>Shen, Zhixuan</au><au>Sheng, Feng</au><au>Li, Xiaodong</au><au>Lu, Yunhao</au><au>Zheng, Yi</au><au>Xu, Zhu-An</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects</atitle><jtitle>Frontiers of physics</jtitle><stitle>Front. Phys</stitle><addtitle>Frontiers of Physics in China</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>12</volume><issue>3</issue><spage>19</spage><epage>28</epage><pages>19-28</pages><artnum>127205</artnum><issn>2095-0462</issn><eissn>2095-0470</eissn><abstract>Chiral anomaly-induced negative magnetoresistance (NMR) has been widely used as critical transport evidence for the existence of Weyl fermions in topological semimetals. In this mini-review, we discuss the general observation of NMR phenomena in non-centrosymmetric NbP and NbAs. We show that NMR can arise from the intrinsic chiral anomaly of Weyl fermions and/or extrinsic effects, such as the superimposition of Hall signals; field-dependent inhomogeneous current flow in the bulk, i.e., current jetting; and weak localization (WL) of coexistent trivial carriers. The WL-controlled NMR is heavily dependent on sample quality and is characterized by a pronounced crossover from positive to negative MR growth at elevated temperatures, resulting from the competition between the phase coherence time and the spin-orbital scattering constant of the bulk trivial pockets. Thus, the correlation between the NMR and the chiral anomaly need to be scrutinized without the support of complimentary techniques. Because of the lifting of spin degeneracy, the spin orientations of Weyl fermions are either parallel or antiparallel to the momentum, which is a unique physical property known as helicity. The conservation of helicity provides strong protection for the transport of Weyl fermions, which can only be effectively scattered by magnetic impurities. Chemical doping with magnetic and non-magnetic impurities is thus more convincing than the NMR method for detecting the existence of Weyl fermions.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11467-016-0636-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-0462
ispartof Frontiers of physics, 2017-06, Vol.12 (3), p.19-28, Article 127205
issn 2095-0462
2095-0470
language eng
recordid cdi_proquest_journals_2918619095
source AUTh Library subscriptions: ProQuest Central; SpringerLink (Online service)
subjects Astronomy
Astrophysics and Cosmology
Atomic
chiral anomaly
Coherent scattering
Condensed Matter Physics
Electrons
extrinsic effects
Fermions
Graphene
Helicity
High temperature
Impurities
Localization
Magnetic fields
Magnetoresistance
Magnetoresistivity
Metalloids
Molecular
NBA
NBP
negative magnetoresistance
NMR
Nuclear magnetic resonance
Optical and Plasma Physics
Orbital scattering
Particle and Nuclear Physics
Phase coherence
Physics
Physics and Astronomy
Recent Progress on Weyl Semimetals
Review Article
Symmetry
Weyl semimetals
半金属
异常
手性
核磁共振
自旋轨道
负磁阻效应
title Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negative%20magnetoresistance%20in%20Weyl%20semimetals%20NbAs%20and%20NbP%EF%BC%9A%20Intrinsic%20chiral%20anomaly%20and%20extrinsic%20effects&rft.jtitle=Frontiers%20of%20physics&rft.au=Li,%20Yupeng&rft.date=2017-06-01&rft.volume=12&rft.issue=3&rft.spage=19&rft.epage=28&rft.pages=19-28&rft.artnum=127205&rft.issn=2095-0462&rft.eissn=2095-0470&rft_id=info:doi/10.1007/s11467-016-0636-8&rft_dat=%3Cproquest_cross%3E2918619095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918619095&rft_id=info:pmid/&rft_cqvip_id=672353981&rfr_iscdi=true