Numerical solution of boundary value problems by using an optimized two-step block method
This paper aims at the application of an optimized two-step hybrid block method for solving boundary value problems with different types of boundary conditions. The proposed approach produces simultaneously approximations at all the grid points after solving an algebraic system of equations. The fin...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2020-05, Vol.84 (1), p.229-251 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | 1 |
container_start_page | 229 |
container_title | Numerical algorithms |
container_volume | 84 |
creator | Ramos, Higinio Rufai, M. A. |
description | This paper aims at the application of an optimized two-step hybrid block method for solving boundary value problems with different types of boundary conditions. The proposed approach produces simultaneously approximations at all the grid points after solving an algebraic system of equations. The final approximate solution is obtained through a homotopy-type strategy which is used in order to get starting values for Newton’s method. The convergence analysis shows that the proposed method has at least fifth order of convergence. Some numerical experiments such as Bratu’s problem, singularly perturbed, and nonlinear system of BVPs are presented to illustrate the better performance of the proposed approach in comparison with other methods available in the recent literature. |
doi_str_mv | 10.1007/s11075-019-00753-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918618442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918618442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-21284745fb1f53c67d2f2a837920629c77072bd88fa9a07d0124a441724494be3</originalsourceid><addsrcrecordid>eNp9kE9PxCAQxYnRxHX1C3gi8YwyQEs5mo3_ko1e9OCJ0JauXdtSgWrWTy9aE2-eZib5vTczD6FToOdAqbwIAFRmhIIiacw44XtoAZlkRLE82089BUmAq-IQHYWwpTTJmFyg5_upt76tTIeD66bYugG7BpduGmrjd_jddJPFo3dlZ_uAyx2eQjtssEnYGNu-_bQ1jh-OhGhHXHauesW9jS-uPkYHjemCPfmtS_R0ffW4uiXrh5u71eWaVBxUJAxYIaTImhKajFe5rFnDTMGlYjRnqpKSSlbWRdEYZaisKTBhhADJhFCitHyJzmbfdOTbZEPUWzf5Ia3UTEGRQyEESxSbqcq7ELxt9OjbPn2ogervCPUcoU4R6p8INU8iPotCgoeN9X_W_6i-AIJbc2o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918618442</pqid></control><display><type>article</type><title>Numerical solution of boundary value problems by using an optimized two-step block method</title><source>Springer Nature - Complete Springer Journals</source><creator>Ramos, Higinio ; Rufai, M. A.</creator><creatorcontrib>Ramos, Higinio ; Rufai, M. A.</creatorcontrib><description>This paper aims at the application of an optimized two-step hybrid block method for solving boundary value problems with different types of boundary conditions. The proposed approach produces simultaneously approximations at all the grid points after solving an algebraic system of equations. The final approximate solution is obtained through a homotopy-type strategy which is used in order to get starting values for Newton’s method. The convergence analysis shows that the proposed method has at least fifth order of convergence. Some numerical experiments such as Bratu’s problem, singularly perturbed, and nonlinear system of BVPs are presented to illustrate the better performance of the proposed approach in comparison with other methods available in the recent literature.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-019-00753-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Approximation ; Boundary conditions ; Boundary value problems ; Computer Science ; Convergence ; Methods ; Nonlinear systems ; Numeric Computing ; Numerical Analysis ; Ordinary differential equations ; Original Paper ; Theory of Computation</subject><ispartof>Numerical algorithms, 2020-05, Vol.84 (1), p.229-251</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-21284745fb1f53c67d2f2a837920629c77072bd88fa9a07d0124a441724494be3</citedby><cites>FETCH-LOGICAL-c319t-21284745fb1f53c67d2f2a837920629c77072bd88fa9a07d0124a441724494be3</cites><orcidid>0000-0003-2791-6230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-019-00753-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-019-00753-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ramos, Higinio</creatorcontrib><creatorcontrib>Rufai, M. A.</creatorcontrib><title>Numerical solution of boundary value problems by using an optimized two-step block method</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>This paper aims at the application of an optimized two-step hybrid block method for solving boundary value problems with different types of boundary conditions. The proposed approach produces simultaneously approximations at all the grid points after solving an algebraic system of equations. The final approximate solution is obtained through a homotopy-type strategy which is used in order to get starting values for Newton’s method. The convergence analysis shows that the proposed method has at least fifth order of convergence. Some numerical experiments such as Bratu’s problem, singularly perturbed, and nonlinear system of BVPs are presented to illustrate the better performance of the proposed approach in comparison with other methods available in the recent literature.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Methods</subject><subject>Nonlinear systems</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Ordinary differential equations</subject><subject>Original Paper</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9PxCAQxYnRxHX1C3gi8YwyQEs5mo3_ko1e9OCJ0JauXdtSgWrWTy9aE2-eZib5vTczD6FToOdAqbwIAFRmhIIiacw44XtoAZlkRLE82089BUmAq-IQHYWwpTTJmFyg5_upt76tTIeD66bYugG7BpduGmrjd_jddJPFo3dlZ_uAyx2eQjtssEnYGNu-_bQ1jh-OhGhHXHauesW9jS-uPkYHjemCPfmtS_R0ffW4uiXrh5u71eWaVBxUJAxYIaTImhKajFe5rFnDTMGlYjRnqpKSSlbWRdEYZaisKTBhhADJhFCitHyJzmbfdOTbZEPUWzf5Ia3UTEGRQyEESxSbqcq7ELxt9OjbPn2ogervCPUcoU4R6p8INU8iPotCgoeN9X_W_6i-AIJbc2o</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ramos, Higinio</creator><creator>Rufai, M. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2791-6230</orcidid></search><sort><creationdate>20200501</creationdate><title>Numerical solution of boundary value problems by using an optimized two-step block method</title><author>Ramos, Higinio ; Rufai, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-21284745fb1f53c67d2f2a837920629c77072bd88fa9a07d0124a441724494be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Methods</topic><topic>Nonlinear systems</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Ordinary differential equations</topic><topic>Original Paper</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos, Higinio</creatorcontrib><creatorcontrib>Rufai, M. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos, Higinio</au><au>Rufai, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of boundary value problems by using an optimized two-step block method</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>84</volume><issue>1</issue><spage>229</spage><epage>251</epage><pages>229-251</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>This paper aims at the application of an optimized two-step hybrid block method for solving boundary value problems with different types of boundary conditions. The proposed approach produces simultaneously approximations at all the grid points after solving an algebraic system of equations. The final approximate solution is obtained through a homotopy-type strategy which is used in order to get starting values for Newton’s method. The convergence analysis shows that the proposed method has at least fifth order of convergence. Some numerical experiments such as Bratu’s problem, singularly perturbed, and nonlinear system of BVPs are presented to illustrate the better performance of the proposed approach in comparison with other methods available in the recent literature.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-019-00753-3</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2791-6230</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2020-05, Vol.84 (1), p.229-251 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_journals_2918618442 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Algorithms Approximation Boundary conditions Boundary value problems Computer Science Convergence Methods Nonlinear systems Numeric Computing Numerical Analysis Ordinary differential equations Original Paper Theory of Computation |
title | Numerical solution of boundary value problems by using an optimized two-step block method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20boundary%20value%20problems%20by%20using%20an%20optimized%20two-step%20block%20method&rft.jtitle=Numerical%20algorithms&rft.au=Ramos,%20Higinio&rft.date=2020-05-01&rft.volume=84&rft.issue=1&rft.spage=229&rft.epage=251&rft.pages=229-251&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-019-00753-3&rft_dat=%3Cproquest_cross%3E2918618442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918618442&rft_id=info:pmid/&rfr_iscdi=true |