Numerical solution of boundary value problems by using an optimized two-step block method

This paper aims at the application of an optimized two-step hybrid block method for solving boundary value problems with different types of boundary conditions. The proposed approach produces simultaneously approximations at all the grid points after solving an algebraic system of equations. The fin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2020-05, Vol.84 (1), p.229-251
Hauptverfasser: Ramos, Higinio, Rufai, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue 1
container_start_page 229
container_title Numerical algorithms
container_volume 84
creator Ramos, Higinio
Rufai, M. A.
description This paper aims at the application of an optimized two-step hybrid block method for solving boundary value problems with different types of boundary conditions. The proposed approach produces simultaneously approximations at all the grid points after solving an algebraic system of equations. The final approximate solution is obtained through a homotopy-type strategy which is used in order to get starting values for Newton’s method. The convergence analysis shows that the proposed method has at least fifth order of convergence. Some numerical experiments such as Bratu’s problem, singularly perturbed, and nonlinear system of BVPs are presented to illustrate the better performance of the proposed approach in comparison with other methods available in the recent literature.
doi_str_mv 10.1007/s11075-019-00753-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918618442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918618442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-21284745fb1f53c67d2f2a837920629c77072bd88fa9a07d0124a441724494be3</originalsourceid><addsrcrecordid>eNp9kE9PxCAQxYnRxHX1C3gi8YwyQEs5mo3_ko1e9OCJ0JauXdtSgWrWTy9aE2-eZib5vTczD6FToOdAqbwIAFRmhIIiacw44XtoAZlkRLE82089BUmAq-IQHYWwpTTJmFyg5_upt76tTIeD66bYugG7BpduGmrjd_jddJPFo3dlZ_uAyx2eQjtssEnYGNu-_bQ1jh-OhGhHXHauesW9jS-uPkYHjemCPfmtS_R0ffW4uiXrh5u71eWaVBxUJAxYIaTImhKajFe5rFnDTMGlYjRnqpKSSlbWRdEYZaisKTBhhADJhFCitHyJzmbfdOTbZEPUWzf5Ia3UTEGRQyEESxSbqcq7ELxt9OjbPn2ogervCPUcoU4R6p8INU8iPotCgoeN9X_W_6i-AIJbc2o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918618442</pqid></control><display><type>article</type><title>Numerical solution of boundary value problems by using an optimized two-step block method</title><source>Springer Nature - Complete Springer Journals</source><creator>Ramos, Higinio ; Rufai, M. A.</creator><creatorcontrib>Ramos, Higinio ; Rufai, M. A.</creatorcontrib><description>This paper aims at the application of an optimized two-step hybrid block method for solving boundary value problems with different types of boundary conditions. The proposed approach produces simultaneously approximations at all the grid points after solving an algebraic system of equations. The final approximate solution is obtained through a homotopy-type strategy which is used in order to get starting values for Newton’s method. The convergence analysis shows that the proposed method has at least fifth order of convergence. Some numerical experiments such as Bratu’s problem, singularly perturbed, and nonlinear system of BVPs are presented to illustrate the better performance of the proposed approach in comparison with other methods available in the recent literature.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-019-00753-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Approximation ; Boundary conditions ; Boundary value problems ; Computer Science ; Convergence ; Methods ; Nonlinear systems ; Numeric Computing ; Numerical Analysis ; Ordinary differential equations ; Original Paper ; Theory of Computation</subject><ispartof>Numerical algorithms, 2020-05, Vol.84 (1), p.229-251</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-21284745fb1f53c67d2f2a837920629c77072bd88fa9a07d0124a441724494be3</citedby><cites>FETCH-LOGICAL-c319t-21284745fb1f53c67d2f2a837920629c77072bd88fa9a07d0124a441724494be3</cites><orcidid>0000-0003-2791-6230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-019-00753-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-019-00753-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ramos, Higinio</creatorcontrib><creatorcontrib>Rufai, M. A.</creatorcontrib><title>Numerical solution of boundary value problems by using an optimized two-step block method</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>This paper aims at the application of an optimized two-step hybrid block method for solving boundary value problems with different types of boundary conditions. The proposed approach produces simultaneously approximations at all the grid points after solving an algebraic system of equations. The final approximate solution is obtained through a homotopy-type strategy which is used in order to get starting values for Newton’s method. The convergence analysis shows that the proposed method has at least fifth order of convergence. Some numerical experiments such as Bratu’s problem, singularly perturbed, and nonlinear system of BVPs are presented to illustrate the better performance of the proposed approach in comparison with other methods available in the recent literature.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Methods</subject><subject>Nonlinear systems</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Ordinary differential equations</subject><subject>Original Paper</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9PxCAQxYnRxHX1C3gi8YwyQEs5mo3_ko1e9OCJ0JauXdtSgWrWTy9aE2-eZib5vTczD6FToOdAqbwIAFRmhIIiacw44XtoAZlkRLE82089BUmAq-IQHYWwpTTJmFyg5_upt76tTIeD66bYugG7BpduGmrjd_jddJPFo3dlZ_uAyx2eQjtssEnYGNu-_bQ1jh-OhGhHXHauesW9jS-uPkYHjemCPfmtS_R0ffW4uiXrh5u71eWaVBxUJAxYIaTImhKajFe5rFnDTMGlYjRnqpKSSlbWRdEYZaisKTBhhADJhFCitHyJzmbfdOTbZEPUWzf5Ia3UTEGRQyEESxSbqcq7ELxt9OjbPn2ogervCPUcoU4R6p8INU8iPotCgoeN9X_W_6i-AIJbc2o</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ramos, Higinio</creator><creator>Rufai, M. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2791-6230</orcidid></search><sort><creationdate>20200501</creationdate><title>Numerical solution of boundary value problems by using an optimized two-step block method</title><author>Ramos, Higinio ; Rufai, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-21284745fb1f53c67d2f2a837920629c77072bd88fa9a07d0124a441724494be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Methods</topic><topic>Nonlinear systems</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Ordinary differential equations</topic><topic>Original Paper</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos, Higinio</creatorcontrib><creatorcontrib>Rufai, M. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos, Higinio</au><au>Rufai, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of boundary value problems by using an optimized two-step block method</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>84</volume><issue>1</issue><spage>229</spage><epage>251</epage><pages>229-251</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>This paper aims at the application of an optimized two-step hybrid block method for solving boundary value problems with different types of boundary conditions. The proposed approach produces simultaneously approximations at all the grid points after solving an algebraic system of equations. The final approximate solution is obtained through a homotopy-type strategy which is used in order to get starting values for Newton’s method. The convergence analysis shows that the proposed method has at least fifth order of convergence. Some numerical experiments such as Bratu’s problem, singularly perturbed, and nonlinear system of BVPs are presented to illustrate the better performance of the proposed approach in comparison with other methods available in the recent literature.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-019-00753-3</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2791-6230</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2020-05, Vol.84 (1), p.229-251
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918618442
source Springer Nature - Complete Springer Journals
subjects Algebra
Algorithms
Approximation
Boundary conditions
Boundary value problems
Computer Science
Convergence
Methods
Nonlinear systems
Numeric Computing
Numerical Analysis
Ordinary differential equations
Original Paper
Theory of Computation
title Numerical solution of boundary value problems by using an optimized two-step block method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20boundary%20value%20problems%20by%20using%20an%20optimized%20two-step%20block%20method&rft.jtitle=Numerical%20algorithms&rft.au=Ramos,%20Higinio&rft.date=2020-05-01&rft.volume=84&rft.issue=1&rft.spage=229&rft.epage=251&rft.pages=229-251&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-019-00753-3&rft_dat=%3Cproquest_cross%3E2918618442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918618442&rft_id=info:pmid/&rfr_iscdi=true