Equipartition of current in metallic armchair nanoribbon of graphene-based device

We numerically investigate the mesoscopic electronic transport properties of Bernal-stacked bilayer/trilayer graphene connected with four monolayer graphene terminals. In armchair-terminated metallic bilayer graphene, we show that the current from one incoming terminal can be equally partitioned int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of physics 2022-12, Vol.17 (6), p.63508, Article 63508
Hauptverfasser: Yang, Hui, Zeng, Junjie, You, Sanyi, Han, Yulei, Qiao, Zhenhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 63508
container_title Frontiers of physics
container_volume 17
creator Yang, Hui
Zeng, Junjie
You, Sanyi
Han, Yulei
Qiao, Zhenhua
description We numerically investigate the mesoscopic electronic transport properties of Bernal-stacked bilayer/trilayer graphene connected with four monolayer graphene terminals. In armchair-terminated metallic bilayer graphene, we show that the current from one incoming terminal can be equally partitioned into other three outgoing terminals near the charge-neutrality point, and the conductance periodically fluctuates, which is independent of the ribbon width but influenced by the interlayer hopping energy. This finding can be clearly understood by using the wave function matching method, in which a quantitative relationship between the periodicity, Fermi energy, and interlayer hopping energy can be reached. Interestingly, for the trilayer case, when the Fermi energy is located around the charge-neutrality point, the fractional quantized conductance 1/(4 e 2 h) can be achieved when system exceeds a critical length.
doi_str_mv 10.1007/s11467-022-1201-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918617112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A731370463</galeid><sourcerecordid>A731370463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-4e127e806ac92a367366f592c5a316080321efdcabb44bdf9c8b44f0d4f5878c3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosoKOoP8FbwXM0k3aY9LotfsCCCnkOaTnYj26Q76Qr-e7NUXASRHDIJzzMZ8mbZFbAbYEzeRoCykgXjvADOoOBH2RlnzaxgpWTHP3XFT7PLGN8ZYwCyTOez7OVuu3ODptGNLvg82NzsiNCPufN5j6PebJzJNfVmrR3lXvtArm0ndEV6WKPHotURu7zDD2fwIjuxehPx8ns_z97u714Xj8Xy-eFpMV8WphR8LEoELrFmlTYN16KSoqrsrOFmpgVUrGaCA9rO6LYty7azjalTYVlX2lktayPOs-up70Bhu8M4qvewI5-eVLyBugIJwA_USm9QOW_DSNr0Lho1lwKETN8iEnXzB5VWh70zwaN16f6XAJNgKMRIaNVArtf0qYCpfSZqykSlTNQ-E7UfhU9OTKxfIR0G_k-qJ2ntVmsk7AbCGJWl4EeH9J_6BQYInrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918617112</pqid></control><display><type>article</type><title>Equipartition of current in metallic armchair nanoribbon of graphene-based device</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Yang, Hui ; Zeng, Junjie ; You, Sanyi ; Han, Yulei ; Qiao, Zhenhua</creator><creatorcontrib>Yang, Hui ; Zeng, Junjie ; You, Sanyi ; Han, Yulei ; Qiao, Zhenhua</creatorcontrib><description>We numerically investigate the mesoscopic electronic transport properties of Bernal-stacked bilayer/trilayer graphene connected with four monolayer graphene terminals. In armchair-terminated metallic bilayer graphene, we show that the current from one incoming terminal can be equally partitioned into other three outgoing terminals near the charge-neutrality point, and the conductance periodically fluctuates, which is independent of the ribbon width but influenced by the interlayer hopping energy. This finding can be clearly understood by using the wave function matching method, in which a quantitative relationship between the periodicity, Fermi energy, and interlayer hopping energy can be reached. Interestingly, for the trilayer case, when the Fermi energy is located around the charge-neutrality point, the fractional quantized conductance 1/(4 e 2 h) can be achieved when system exceeds a critical length.</description><identifier>ISSN: 2095-0462</identifier><identifier>EISSN: 2095-0470</identifier><identifier>DOI: 10.1007/s11467-022-1201-2</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>armchair nanoribbon ; Astronomy ; Astrophysics and Cosmology ; Atomic ; Bilayers ; Condensed Matter Physics ; Electron transport ; electronic transport ; Energy ; Graphene ; Graphite ; Interlayers ; Investigations ; Molecular ; Nanoribbons ; Optical and Plasma Physics ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Research Article ; Transport properties ; Wave functions</subject><ispartof>Frontiers of physics, 2022-12, Vol.17 (6), p.63508, Article 63508</ispartof><rights>Copyright reserved, 2022, Higher Education Press</rights><rights>Higher Education Press 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Higher Education Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-4e127e806ac92a367366f592c5a316080321efdcabb44bdf9c8b44f0d4f5878c3</citedby><cites>FETCH-LOGICAL-c432t-4e127e806ac92a367366f592c5a316080321efdcabb44bdf9c8b44f0d4f5878c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11467-022-1201-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918617112?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Zeng, Junjie</creatorcontrib><creatorcontrib>You, Sanyi</creatorcontrib><creatorcontrib>Han, Yulei</creatorcontrib><creatorcontrib>Qiao, Zhenhua</creatorcontrib><title>Equipartition of current in metallic armchair nanoribbon of graphene-based device</title><title>Frontiers of physics</title><addtitle>Front. Phys</addtitle><description>We numerically investigate the mesoscopic electronic transport properties of Bernal-stacked bilayer/trilayer graphene connected with four monolayer graphene terminals. In armchair-terminated metallic bilayer graphene, we show that the current from one incoming terminal can be equally partitioned into other three outgoing terminals near the charge-neutrality point, and the conductance periodically fluctuates, which is independent of the ribbon width but influenced by the interlayer hopping energy. This finding can be clearly understood by using the wave function matching method, in which a quantitative relationship between the periodicity, Fermi energy, and interlayer hopping energy can be reached. Interestingly, for the trilayer case, when the Fermi energy is located around the charge-neutrality point, the fractional quantized conductance 1/(4 e 2 h) can be achieved when system exceeds a critical length.</description><subject>armchair nanoribbon</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Atomic</subject><subject>Bilayers</subject><subject>Condensed Matter Physics</subject><subject>Electron transport</subject><subject>electronic transport</subject><subject>Energy</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Interlayers</subject><subject>Investigations</subject><subject>Molecular</subject><subject>Nanoribbons</subject><subject>Optical and Plasma Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Research Article</subject><subject>Transport properties</subject><subject>Wave functions</subject><issn>2095-0462</issn><issn>2095-0470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1LxDAQhosoKOoP8FbwXM0k3aY9LotfsCCCnkOaTnYj26Q76Qr-e7NUXASRHDIJzzMZ8mbZFbAbYEzeRoCykgXjvADOoOBH2RlnzaxgpWTHP3XFT7PLGN8ZYwCyTOez7OVuu3ODptGNLvg82NzsiNCPufN5j6PebJzJNfVmrR3lXvtArm0ndEV6WKPHotURu7zDD2fwIjuxehPx8ns_z97u714Xj8Xy-eFpMV8WphR8LEoELrFmlTYN16KSoqrsrOFmpgVUrGaCA9rO6LYty7azjalTYVlX2lktayPOs-up70Bhu8M4qvewI5-eVLyBugIJwA_USm9QOW_DSNr0Lho1lwKETN8iEnXzB5VWh70zwaN16f6XAJNgKMRIaNVArtf0qYCpfSZqykSlTNQ-E7UfhU9OTKxfIR0G_k-qJ2ntVmsk7AbCGJWl4EeH9J_6BQYInrM</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Yang, Hui</creator><creator>Zeng, Junjie</creator><creator>You, Sanyi</creator><creator>Han, Yulei</creator><creator>Qiao, Zhenhua</creator><general>Higher Education Press</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20221201</creationdate><title>Equipartition of current in metallic armchair nanoribbon of graphene-based device</title><author>Yang, Hui ; Zeng, Junjie ; You, Sanyi ; Han, Yulei ; Qiao, Zhenhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-4e127e806ac92a367366f592c5a316080321efdcabb44bdf9c8b44f0d4f5878c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>armchair nanoribbon</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Atomic</topic><topic>Bilayers</topic><topic>Condensed Matter Physics</topic><topic>Electron transport</topic><topic>electronic transport</topic><topic>Energy</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Interlayers</topic><topic>Investigations</topic><topic>Molecular</topic><topic>Nanoribbons</topic><topic>Optical and Plasma Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Research Article</topic><topic>Transport properties</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Zeng, Junjie</creatorcontrib><creatorcontrib>You, Sanyi</creatorcontrib><creatorcontrib>Han, Yulei</creatorcontrib><creatorcontrib>Qiao, Zhenhua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Frontiers of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Hui</au><au>Zeng, Junjie</au><au>You, Sanyi</au><au>Han, Yulei</au><au>Qiao, Zhenhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equipartition of current in metallic armchair nanoribbon of graphene-based device</atitle><jtitle>Frontiers of physics</jtitle><stitle>Front. Phys</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>17</volume><issue>6</issue><spage>63508</spage><pages>63508-</pages><artnum>63508</artnum><issn>2095-0462</issn><eissn>2095-0470</eissn><abstract>We numerically investigate the mesoscopic electronic transport properties of Bernal-stacked bilayer/trilayer graphene connected with four monolayer graphene terminals. In armchair-terminated metallic bilayer graphene, we show that the current from one incoming terminal can be equally partitioned into other three outgoing terminals near the charge-neutrality point, and the conductance periodically fluctuates, which is independent of the ribbon width but influenced by the interlayer hopping energy. This finding can be clearly understood by using the wave function matching method, in which a quantitative relationship between the periodicity, Fermi energy, and interlayer hopping energy can be reached. Interestingly, for the trilayer case, when the Fermi energy is located around the charge-neutrality point, the fractional quantized conductance 1/(4 e 2 h) can be achieved when system exceeds a critical length.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11467-022-1201-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 2095-0462
ispartof Frontiers of physics, 2022-12, Vol.17 (6), p.63508, Article 63508
issn 2095-0462
2095-0470
language eng
recordid cdi_proquest_journals_2918617112
source SpringerLink Journals; ProQuest Central
subjects armchair nanoribbon
Astronomy
Astrophysics and Cosmology
Atomic
Bilayers
Condensed Matter Physics
Electron transport
electronic transport
Energy
Graphene
Graphite
Interlayers
Investigations
Molecular
Nanoribbons
Optical and Plasma Physics
Particle and Nuclear Physics
Physics
Physics and Astronomy
Research Article
Transport properties
Wave functions
title Equipartition of current in metallic armchair nanoribbon of graphene-based device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equipartition%20of%20current%20in%20metallic%20armchair%20nanoribbon%20of%20graphene-based%20device&rft.jtitle=Frontiers%20of%20physics&rft.au=Yang,%20Hui&rft.date=2022-12-01&rft.volume=17&rft.issue=6&rft.spage=63508&rft.pages=63508-&rft.artnum=63508&rft.issn=2095-0462&rft.eissn=2095-0470&rft_id=info:doi/10.1007/s11467-022-1201-2&rft_dat=%3Cgale_proqu%3EA731370463%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918617112&rft_id=info:pmid/&rft_galeid=A731370463&rfr_iscdi=true