Transfer of quantum entangled states between superconducting qubits and microwave field qubits

Transferring entangled states between matter qubits and microwave-field (or optical-field) qubits is of fundamental interest in quantum mechanics and necessary in hybrid quantum information processing and quantum communication. We here propose a way for transferring entangled states between supercon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of physics 2022-12, Vol.17 (6), p.61502, Article 61502
Hauptverfasser: Liu, Tong, Guo, Bao-Qing, Zhou, Yan-Hui, Zhao, Jun-Long, Fang, Yu-Liang, Wu, Qi-Cheng, Yang, Chui-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 61502
container_title Frontiers of physics
container_volume 17
creator Liu, Tong
Guo, Bao-Qing
Zhou, Yan-Hui
Zhao, Jun-Long
Fang, Yu-Liang
Wu, Qi-Cheng
Yang, Chui-Ping
description Transferring entangled states between matter qubits and microwave-field (or optical-field) qubits is of fundamental interest in quantum mechanics and necessary in hybrid quantum information processing and quantum communication. We here propose a way for transferring entangled states between superconducting qubits (matter qubits) and microwave-field qubits. This proposal is realized by a system consisting of multiple superconducting qutrits and microwave cavities. Here, qutrit refers to a three-level quantum system with the two lowest levels encoding a qubit while the third level acting as an auxiliary state. In contrast, the microwave-field qubits are encoded with coherent states of microwave cavities. Because the third energy level of each qutrit is not populated during the operation, decoherence from the higher energy levels is greatly suppressed. The entangled states can be deterministically transferred because measurement on the states is not needed. The operation time is independent of the number of superconducting qubits or microwave-field qubits. In addition, the architecture of the circuit system is quite simple because only a coupler qutrit and an auxiliary cavity are required. As an example, our numerical simulations show that high-fidelity transfer of entangled states from two superconducting qubits to two microwave-field qubits is feasible with present circuit QED technology. This proposal is quite general and can be extended to transfer entangled states between other matter qubits (e.g., atoms, quantum dots, and NV centers) and microwave- or optical-field qubits encoded with coherent states.
doi_str_mv 10.1007/s11467-022-1166-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918616718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918616718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-d7637925600e9bcce8d819da07f7154ec123750a1ad0f25e817bfaa7dfcae2df3</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEtPYB-AWiXMhTtukPaKJf9IkLuNKlDZO12lLuyRl4ttT1AluO9mW3-_ZeoTcArsHxuRDAMiETBjnCYAQCVyQGWdlnrBMssu_XvBrsghhyxgDkNk4z8jn2msXLHraWXoYtIvDnqKL2jU7NDREHTHQCuMR0dEw9Ojrzpmhjq1rRqBqY6DaGbpva98d9RdS2-LOnFY35MrqXcDFqc7Jx_PTevmarN5f3paPq6RORR4TI0UqS54LxrCs6hoLU0BpNJNWQp5hDTyVOdOgDbM8xwJkZbWWxtYaubHpnNxNvr3vDgOGqLbd4N14UvESCgFCQjGqYFKNr4bg0aret3vtvxUw9ZukmpJUY5LqN0kFI8MnJoxa16D_dz4HFRO0aZsNejS9xxCU9Z2LLfpz6A_QDYoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918616718</pqid></control><display><type>article</type><title>Transfer of quantum entangled states between superconducting qubits and microwave field qubits</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Liu, Tong ; Guo, Bao-Qing ; Zhou, Yan-Hui ; Zhao, Jun-Long ; Fang, Yu-Liang ; Wu, Qi-Cheng ; Yang, Chui-Ping</creator><creatorcontrib>Liu, Tong ; Guo, Bao-Qing ; Zhou, Yan-Hui ; Zhao, Jun-Long ; Fang, Yu-Liang ; Wu, Qi-Cheng ; Yang, Chui-Ping</creatorcontrib><description>Transferring entangled states between matter qubits and microwave-field (or optical-field) qubits is of fundamental interest in quantum mechanics and necessary in hybrid quantum information processing and quantum communication. We here propose a way for transferring entangled states between superconducting qubits (matter qubits) and microwave-field qubits. This proposal is realized by a system consisting of multiple superconducting qutrits and microwave cavities. Here, qutrit refers to a three-level quantum system with the two lowest levels encoding a qubit while the third level acting as an auxiliary state. In contrast, the microwave-field qubits are encoded with coherent states of microwave cavities. Because the third energy level of each qutrit is not populated during the operation, decoherence from the higher energy levels is greatly suppressed. The entangled states can be deterministically transferred because measurement on the states is not needed. The operation time is independent of the number of superconducting qubits or microwave-field qubits. In addition, the architecture of the circuit system is quite simple because only a coupler qutrit and an auxiliary cavity are required. As an example, our numerical simulations show that high-fidelity transfer of entangled states from two superconducting qubits to two microwave-field qubits is feasible with present circuit QED technology. This proposal is quite general and can be extended to transfer entangled states between other matter qubits (e.g., atoms, quantum dots, and NV centers) and microwave- or optical-field qubits encoded with coherent states.</description><identifier>ISSN: 2095-0462</identifier><identifier>EISSN: 2095-0470</identifier><identifier>DOI: 10.1007/s11467-022-1166-1</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Atomic ; circuit QED ; Circuits ; Coding ; coherent states ; Condensed Matter Physics ; Data processing ; Energy levels ; Entangled states ; Holes ; microwave field qubits ; Molecular ; Optical and Plasma Physics ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum dots ; Quantum electrodynamics ; Quantum entanglement ; Quantum mechanics ; Quantum phenomena ; Quantum theory ; Qubits (quantum computing) ; Research Article ; superconducting qubits ; Superconductivity ; tranferring entangled states</subject><ispartof>Frontiers of physics, 2022-12, Vol.17 (6), p.61502, Article 61502</ispartof><rights>Copyright reserved, 2022, Higher Education Press</rights><rights>Higher Education Press 2022</rights><rights>Higher Education Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-d7637925600e9bcce8d819da07f7154ec123750a1ad0f25e817bfaa7dfcae2df3</citedby><cites>FETCH-LOGICAL-c365t-d7637925600e9bcce8d819da07f7154ec123750a1ad0f25e817bfaa7dfcae2df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11467-022-1166-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918616718?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,21388,21389,21390,23255,27923,27924,33529,33702,33743,34004,34313,41487,42556,43658,43786,43804,43952,44066,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Guo, Bao-Qing</creatorcontrib><creatorcontrib>Zhou, Yan-Hui</creatorcontrib><creatorcontrib>Zhao, Jun-Long</creatorcontrib><creatorcontrib>Fang, Yu-Liang</creatorcontrib><creatorcontrib>Wu, Qi-Cheng</creatorcontrib><creatorcontrib>Yang, Chui-Ping</creatorcontrib><title>Transfer of quantum entangled states between superconducting qubits and microwave field qubits</title><title>Frontiers of physics</title><addtitle>Front. Phys</addtitle><description>Transferring entangled states between matter qubits and microwave-field (or optical-field) qubits is of fundamental interest in quantum mechanics and necessary in hybrid quantum information processing and quantum communication. We here propose a way for transferring entangled states between superconducting qubits (matter qubits) and microwave-field qubits. This proposal is realized by a system consisting of multiple superconducting qutrits and microwave cavities. Here, qutrit refers to a three-level quantum system with the two lowest levels encoding a qubit while the third level acting as an auxiliary state. In contrast, the microwave-field qubits are encoded with coherent states of microwave cavities. Because the third energy level of each qutrit is not populated during the operation, decoherence from the higher energy levels is greatly suppressed. The entangled states can be deterministically transferred because measurement on the states is not needed. The operation time is independent of the number of superconducting qubits or microwave-field qubits. In addition, the architecture of the circuit system is quite simple because only a coupler qutrit and an auxiliary cavity are required. As an example, our numerical simulations show that high-fidelity transfer of entangled states from two superconducting qubits to two microwave-field qubits is feasible with present circuit QED technology. This proposal is quite general and can be extended to transfer entangled states between other matter qubits (e.g., atoms, quantum dots, and NV centers) and microwave- or optical-field qubits encoded with coherent states.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Atomic</subject><subject>circuit QED</subject><subject>Circuits</subject><subject>Coding</subject><subject>coherent states</subject><subject>Condensed Matter Physics</subject><subject>Data processing</subject><subject>Energy levels</subject><subject>Entangled states</subject><subject>Holes</subject><subject>microwave field qubits</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum dots</subject><subject>Quantum electrodynamics</subject><subject>Quantum entanglement</subject><subject>Quantum mechanics</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><subject>Research Article</subject><subject>superconducting qubits</subject><subject>Superconductivity</subject><subject>tranferring entangled states</subject><issn>2095-0462</issn><issn>2095-0470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9PwzAMxSMEEtPYB-AWiXMhTtukPaKJf9IkLuNKlDZO12lLuyRl4ttT1AluO9mW3-_ZeoTcArsHxuRDAMiETBjnCYAQCVyQGWdlnrBMssu_XvBrsghhyxgDkNk4z8jn2msXLHraWXoYtIvDnqKL2jU7NDREHTHQCuMR0dEw9Ojrzpmhjq1rRqBqY6DaGbpva98d9RdS2-LOnFY35MrqXcDFqc7Jx_PTevmarN5f3paPq6RORR4TI0UqS54LxrCs6hoLU0BpNJNWQp5hDTyVOdOgDbM8xwJkZbWWxtYaubHpnNxNvr3vDgOGqLbd4N14UvESCgFCQjGqYFKNr4bg0aret3vtvxUw9ZukmpJUY5LqN0kFI8MnJoxa16D_dz4HFRO0aZsNejS9xxCU9Z2LLfpz6A_QDYoQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Liu, Tong</creator><creator>Guo, Bao-Qing</creator><creator>Zhou, Yan-Hui</creator><creator>Zhao, Jun-Long</creator><creator>Fang, Yu-Liang</creator><creator>Wu, Qi-Cheng</creator><creator>Yang, Chui-Ping</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20221201</creationdate><title>Transfer of quantum entangled states between superconducting qubits and microwave field qubits</title><author>Liu, Tong ; Guo, Bao-Qing ; Zhou, Yan-Hui ; Zhao, Jun-Long ; Fang, Yu-Liang ; Wu, Qi-Cheng ; Yang, Chui-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-d7637925600e9bcce8d819da07f7154ec123750a1ad0f25e817bfaa7dfcae2df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Atomic</topic><topic>circuit QED</topic><topic>Circuits</topic><topic>Coding</topic><topic>coherent states</topic><topic>Condensed Matter Physics</topic><topic>Data processing</topic><topic>Energy levels</topic><topic>Entangled states</topic><topic>Holes</topic><topic>microwave field qubits</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum dots</topic><topic>Quantum electrodynamics</topic><topic>Quantum entanglement</topic><topic>Quantum mechanics</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><topic>Research Article</topic><topic>superconducting qubits</topic><topic>Superconductivity</topic><topic>tranferring entangled states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Guo, Bao-Qing</creatorcontrib><creatorcontrib>Zhou, Yan-Hui</creatorcontrib><creatorcontrib>Zhao, Jun-Long</creatorcontrib><creatorcontrib>Fang, Yu-Liang</creatorcontrib><creatorcontrib>Wu, Qi-Cheng</creatorcontrib><creatorcontrib>Yang, Chui-Ping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Frontiers of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tong</au><au>Guo, Bao-Qing</au><au>Zhou, Yan-Hui</au><au>Zhao, Jun-Long</au><au>Fang, Yu-Liang</au><au>Wu, Qi-Cheng</au><au>Yang, Chui-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer of quantum entangled states between superconducting qubits and microwave field qubits</atitle><jtitle>Frontiers of physics</jtitle><stitle>Front. Phys</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>17</volume><issue>6</issue><spage>61502</spage><pages>61502-</pages><artnum>61502</artnum><issn>2095-0462</issn><eissn>2095-0470</eissn><abstract>Transferring entangled states between matter qubits and microwave-field (or optical-field) qubits is of fundamental interest in quantum mechanics and necessary in hybrid quantum information processing and quantum communication. We here propose a way for transferring entangled states between superconducting qubits (matter qubits) and microwave-field qubits. This proposal is realized by a system consisting of multiple superconducting qutrits and microwave cavities. Here, qutrit refers to a three-level quantum system with the two lowest levels encoding a qubit while the third level acting as an auxiliary state. In contrast, the microwave-field qubits are encoded with coherent states of microwave cavities. Because the third energy level of each qutrit is not populated during the operation, decoherence from the higher energy levels is greatly suppressed. The entangled states can be deterministically transferred because measurement on the states is not needed. The operation time is independent of the number of superconducting qubits or microwave-field qubits. In addition, the architecture of the circuit system is quite simple because only a coupler qutrit and an auxiliary cavity are required. As an example, our numerical simulations show that high-fidelity transfer of entangled states from two superconducting qubits to two microwave-field qubits is feasible with present circuit QED technology. This proposal is quite general and can be extended to transfer entangled states between other matter qubits (e.g., atoms, quantum dots, and NV centers) and microwave- or optical-field qubits encoded with coherent states.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11467-022-1166-1</doi></addata></record>
fulltext fulltext
identifier ISSN: 2095-0462
ispartof Frontiers of physics, 2022-12, Vol.17 (6), p.61502, Article 61502
issn 2095-0462
2095-0470
language eng
recordid cdi_proquest_journals_2918616718
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Astronomy
Astrophysics and Cosmology
Atomic
circuit QED
Circuits
Coding
coherent states
Condensed Matter Physics
Data processing
Energy levels
Entangled states
Holes
microwave field qubits
Molecular
Optical and Plasma Physics
Particle and Nuclear Physics
Physics
Physics and Astronomy
Quantum dots
Quantum electrodynamics
Quantum entanglement
Quantum mechanics
Quantum phenomena
Quantum theory
Qubits (quantum computing)
Research Article
superconducting qubits
Superconductivity
tranferring entangled states
title Transfer of quantum entangled states between superconducting qubits and microwave field qubits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20of%20quantum%20entangled%20states%20between%20superconducting%20qubits%20and%20microwave%20field%20qubits&rft.jtitle=Frontiers%20of%20physics&rft.au=Liu,%20Tong&rft.date=2022-12-01&rft.volume=17&rft.issue=6&rft.spage=61502&rft.pages=61502-&rft.artnum=61502&rft.issn=2095-0462&rft.eissn=2095-0470&rft_id=info:doi/10.1007/s11467-022-1166-1&rft_dat=%3Cproquest_cross%3E2918616718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918616718&rft_id=info:pmid/&rfr_iscdi=true