Stability of a robust interaction control for single-degree-of-freedom robots with unstructured environments
This paper provides stability analysis of a robust interaction control, nonlinear bang–bang impact control, for one degree-of-freedom robot manipulators. The interaction controller takes advantages of robot joint’s friction that is not helpful for constrained space control usually, has no need to ch...
Gespeichert in:
Veröffentlicht in: | Intelligent service robotics 2020-07, Vol.13 (3), p.393-401 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 401 |
---|---|
container_issue | 3 |
container_start_page | 393 |
container_title | Intelligent service robotics |
container_volume | 13 |
creator | Kang, Hyunah Lee, Song Joo Kang, Sang Hoon |
description | This paper provides stability analysis of a robust interaction control, nonlinear bang–bang impact control, for one degree-of-freedom robot manipulators. The interaction controller takes advantages of robot joint’s friction that is not helpful for constrained space control usually, has no need to change gains throughout the tasks requiring free space motion, constrained motion, and the transition between the two, and needs virtually no information on robot dynamics for its design and implementation. Despite these advantages, to date, there was no complete and formal proof of its stability, hindering its practical use for interaction tasks requiring robots’ frequent contact with various environments, including humans. A sufficient stability condition was derived based on the
L
∞
space analysis with its physical implications. Stability condition was found to be only dependent on the intentional time delay for the online lumped robot dynamics estimation and the inertia estimation accuracy and was not dependent on the passive environment properties and disturbances. Interestingly, in the case of the nonlinear bang–bang impact control, joint frictions helped stabilize the robot during the transition from free space to constrained space. |
doi_str_mv | 10.1007/s11370-020-00323-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918616318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918616318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2113f7820de5e568dc41703746d89108ffaf9fd6f1e19181e2a0a7e69b0edf613</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhCMEEqXwApwscTZ47dRxjqjiT6rEAThbbrIurlK72A5V356UILhxWM0eZma1X1FcArsGxqqbBCAqRhkfhgku6O6omICSQHmlyuPfvZKnxVlKa8YklFxMiu4lm6XrXN6TYIkhMSz7lInzGaNpsgueNMHnGDpiQyTJ-VWHtMVVRKTBUjtoGzaHXMiJ7Fx-J71POfZN7iO2BP2ni8Fv0Od0XpxY0yW8-NFp8XZ_9zp_pIvnh6f57YI2AupM-fCMrRRnLc5wJlXblFAxUZWyVTUwZa2xtW2lBYQaFCA3zFQo6yXD1koQ0-Jq7N3G8NFjynod-uiHk5rXBxJSgBpcfHQ1MaQU0eptdBsT9xqYPlDVI1U9UNXfVPVuCIkxlAazX2H8q_4n9QUmr302</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918616318</pqid></control><display><type>article</type><title>Stability of a robust interaction control for single-degree-of-freedom robots with unstructured environments</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Kang, Hyunah ; Lee, Song Joo ; Kang, Sang Hoon</creator><creatorcontrib>Kang, Hyunah ; Lee, Song Joo ; Kang, Sang Hoon</creatorcontrib><description>This paper provides stability analysis of a robust interaction control, nonlinear bang–bang impact control, for one degree-of-freedom robot manipulators. The interaction controller takes advantages of robot joint’s friction that is not helpful for constrained space control usually, has no need to change gains throughout the tasks requiring free space motion, constrained motion, and the transition between the two, and needs virtually no information on robot dynamics for its design and implementation. Despite these advantages, to date, there was no complete and formal proof of its stability, hindering its practical use for interaction tasks requiring robots’ frequent contact with various environments, including humans. A sufficient stability condition was derived based on the
L
∞
space analysis with its physical implications. Stability condition was found to be only dependent on the intentional time delay for the online lumped robot dynamics estimation and the inertia estimation accuracy and was not dependent on the passive environment properties and disturbances. Interestingly, in the case of the nonlinear bang–bang impact control, joint frictions helped stabilize the robot during the transition from free space to constrained space.</description><identifier>ISSN: 1861-2776</identifier><identifier>EISSN: 1861-2784</identifier><identifier>DOI: 10.1007/s11370-020-00323-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Control ; Degrees of freedom ; Dynamical Systems ; Engineering ; Friction ; Inequality ; Mechatronics ; Nonlinear control ; Original Research Paper ; Robot arms ; Robot control ; Robot dynamics ; Robotics ; Robotics and Automation ; Robots ; Robust control ; Stability analysis ; Systems stability ; User Interfaces and Human Computer Interaction ; Velocity ; Vibration</subject><ispartof>Intelligent service robotics, 2020-07, Vol.13 (3), p.393-401</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2113f7820de5e568dc41703746d89108ffaf9fd6f1e19181e2a0a7e69b0edf613</citedby><cites>FETCH-LOGICAL-c319t-2113f7820de5e568dc41703746d89108ffaf9fd6f1e19181e2a0a7e69b0edf613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11370-020-00323-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918616318?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21386,27922,27923,33742,41486,42555,43803,51317,64383,64387,72239</link.rule.ids></links><search><creatorcontrib>Kang, Hyunah</creatorcontrib><creatorcontrib>Lee, Song Joo</creatorcontrib><creatorcontrib>Kang, Sang Hoon</creatorcontrib><title>Stability of a robust interaction control for single-degree-of-freedom robots with unstructured environments</title><title>Intelligent service robotics</title><addtitle>Intel Serv Robotics</addtitle><description>This paper provides stability analysis of a robust interaction control, nonlinear bang–bang impact control, for one degree-of-freedom robot manipulators. The interaction controller takes advantages of robot joint’s friction that is not helpful for constrained space control usually, has no need to change gains throughout the tasks requiring free space motion, constrained motion, and the transition between the two, and needs virtually no information on robot dynamics for its design and implementation. Despite these advantages, to date, there was no complete and formal proof of its stability, hindering its practical use for interaction tasks requiring robots’ frequent contact with various environments, including humans. A sufficient stability condition was derived based on the
L
∞
space analysis with its physical implications. Stability condition was found to be only dependent on the intentional time delay for the online lumped robot dynamics estimation and the inertia estimation accuracy and was not dependent on the passive environment properties and disturbances. Interestingly, in the case of the nonlinear bang–bang impact control, joint frictions helped stabilize the robot during the transition from free space to constrained space.</description><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Degrees of freedom</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Friction</subject><subject>Inequality</subject><subject>Mechatronics</subject><subject>Nonlinear control</subject><subject>Original Research Paper</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robot dynamics</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Robots</subject><subject>Robust control</subject><subject>Stability analysis</subject><subject>Systems stability</subject><subject>User Interfaces and Human Computer Interaction</subject><subject>Velocity</subject><subject>Vibration</subject><issn>1861-2776</issn><issn>1861-2784</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1OwzAQhCMEEqXwApwscTZ47dRxjqjiT6rEAThbbrIurlK72A5V356UILhxWM0eZma1X1FcArsGxqqbBCAqRhkfhgku6O6omICSQHmlyuPfvZKnxVlKa8YklFxMiu4lm6XrXN6TYIkhMSz7lInzGaNpsgueNMHnGDpiQyTJ-VWHtMVVRKTBUjtoGzaHXMiJ7Fx-J71POfZN7iO2BP2ni8Fv0Od0XpxY0yW8-NFp8XZ_9zp_pIvnh6f57YI2AupM-fCMrRRnLc5wJlXblFAxUZWyVTUwZa2xtW2lBYQaFCA3zFQo6yXD1koQ0-Jq7N3G8NFjynod-uiHk5rXBxJSgBpcfHQ1MaQU0eptdBsT9xqYPlDVI1U9UNXfVPVuCIkxlAazX2H8q_4n9QUmr302</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Kang, Hyunah</creator><creator>Lee, Song Joo</creator><creator>Kang, Sang Hoon</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20200701</creationdate><title>Stability of a robust interaction control for single-degree-of-freedom robots with unstructured environments</title><author>Kang, Hyunah ; Lee, Song Joo ; Kang, Sang Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2113f7820de5e568dc41703746d89108ffaf9fd6f1e19181e2a0a7e69b0edf613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Degrees of freedom</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Friction</topic><topic>Inequality</topic><topic>Mechatronics</topic><topic>Nonlinear control</topic><topic>Original Research Paper</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robot dynamics</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Robots</topic><topic>Robust control</topic><topic>Stability analysis</topic><topic>Systems stability</topic><topic>User Interfaces and Human Computer Interaction</topic><topic>Velocity</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Hyunah</creatorcontrib><creatorcontrib>Lee, Song Joo</creatorcontrib><creatorcontrib>Kang, Sang Hoon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Intelligent service robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Hyunah</au><au>Lee, Song Joo</au><au>Kang, Sang Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of a robust interaction control for single-degree-of-freedom robots with unstructured environments</atitle><jtitle>Intelligent service robotics</jtitle><stitle>Intel Serv Robotics</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>13</volume><issue>3</issue><spage>393</spage><epage>401</epage><pages>393-401</pages><issn>1861-2776</issn><eissn>1861-2784</eissn><abstract>This paper provides stability analysis of a robust interaction control, nonlinear bang–bang impact control, for one degree-of-freedom robot manipulators. The interaction controller takes advantages of robot joint’s friction that is not helpful for constrained space control usually, has no need to change gains throughout the tasks requiring free space motion, constrained motion, and the transition between the two, and needs virtually no information on robot dynamics for its design and implementation. Despite these advantages, to date, there was no complete and formal proof of its stability, hindering its practical use for interaction tasks requiring robots’ frequent contact with various environments, including humans. A sufficient stability condition was derived based on the
L
∞
space analysis with its physical implications. Stability condition was found to be only dependent on the intentional time delay for the online lumped robot dynamics estimation and the inertia estimation accuracy and was not dependent on the passive environment properties and disturbances. Interestingly, in the case of the nonlinear bang–bang impact control, joint frictions helped stabilize the robot during the transition from free space to constrained space.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11370-020-00323-w</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-2776 |
ispartof | Intelligent service robotics, 2020-07, Vol.13 (3), p.393-401 |
issn | 1861-2776 1861-2784 |
language | eng |
recordid | cdi_proquest_journals_2918616318 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Artificial Intelligence Control Degrees of freedom Dynamical Systems Engineering Friction Inequality Mechatronics Nonlinear control Original Research Paper Robot arms Robot control Robot dynamics Robotics Robotics and Automation Robots Robust control Stability analysis Systems stability User Interfaces and Human Computer Interaction Velocity Vibration |
title | Stability of a robust interaction control for single-degree-of-freedom robots with unstructured environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20a%20robust%20interaction%20control%20for%20single-degree-of-freedom%20robots%20with%20unstructured%20environments&rft.jtitle=Intelligent%20service%20robotics&rft.au=Kang,%20Hyunah&rft.date=2020-07-01&rft.volume=13&rft.issue=3&rft.spage=393&rft.epage=401&rft.pages=393-401&rft.issn=1861-2776&rft.eissn=1861-2784&rft_id=info:doi/10.1007/s11370-020-00323-w&rft_dat=%3Cproquest_cross%3E2918616318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918616318&rft_id=info:pmid/&rfr_iscdi=true |