Efficient second-order, linear, decoupled and unconditionally energy stable schemes of the Cahn-Hilliard-Darcy equations for the Hele-Shaw flow
In this paper, we consider the numerical approximations for a hydrodynamical model of Cahn-Hilliard-Darcy equations. We develop two linear, decoupled, energy stable, and second-order time-marching schemes based on the “Invariant Energy Quadratization” method for nonlinear terms in the Cahn-Hilliard...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2023-04, Vol.92 (4), p.2275-2306 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2306 |
---|---|
container_issue | 4 |
container_start_page | 2275 |
container_title | Numerical algorithms |
container_volume | 92 |
creator | Chen, Rui Li, Yaxiang Pan, Kejia Yang, Xiaofeng |
description | In this paper, we consider the numerical approximations for a hydrodynamical model of Cahn-Hilliard-Darcy equations. We develop two linear, decoupled, energy stable, and second-order time-marching schemes based on the “Invariant Energy Quadratization” method for nonlinear terms in the Cahn-Hilliard equation, and the projection method for the Darcy equations. Moreover, we prove the well-posedness of the linear system and their unconditional energy stabilities rigorously. We also construct a linear, decoupled, energy stable, and second-order time marching scheme by using the “Scalar Auxiliary Variable” method. Various numerical tests are presented to illustrate the stability and the accuracy of the numerical schemes and simulate the process of coarsening in binary fluid and investigate the effect of the rotating and the gravity on the Hele-Shaw cell in 2D and 3D. |
doi_str_mv | 10.1007/s11075-022-01388-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918615310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918615310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-646882c46d148187a9985b75036f378f815978a3d2f98a6e07c4d58a33b814053</originalsourceid><addsrcrecordid>eNp9kMFqGzEQhpfSQFMnL9CToNcq1UirlfZYXLcuBHJochbyamRvUCRH2iX4KfrKke1CbjnNMHzfD_M3zRdgN8CY-l4AmJKUcU4ZCK2p-tBcglSc9ryTH-vOQFEQvf7UfC7lkbGqcXXZ_Ft5Pw4jxokUHFJ0NGWH-RsJY0Rbp6vXeR_QERsdmeORGacxRRvCgWDEvD2QMtlNQFKGHT5hIcmTaYdkaXeRrscQRpsd_WnzUIXn2R7tQnzKJ2qNAenfnX0hPqSXq-bC21Dw-v9cNA-_VvfLNb29-_1n-eOWDgL6iXZtpzUf2s5Bq0Er2_dabpRkovNCaa9B9kpb4bjvte2QqaF1sh7ERkPLpFg0X8-5-5yeZyyTeUxzrk8Vw3vQHUgBrFL8TA05lZLRm30en2w-GGDmWLw5F29q8eZUvFFVEmepVDhuMb9Fv2O9ApechlM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918615310</pqid></control><display><type>article</type><title>Efficient second-order, linear, decoupled and unconditionally energy stable schemes of the Cahn-Hilliard-Darcy equations for the Hele-Shaw flow</title><source>SpringerLink Journals</source><creator>Chen, Rui ; Li, Yaxiang ; Pan, Kejia ; Yang, Xiaofeng</creator><creatorcontrib>Chen, Rui ; Li, Yaxiang ; Pan, Kejia ; Yang, Xiaofeng</creatorcontrib><description>In this paper, we consider the numerical approximations for a hydrodynamical model of Cahn-Hilliard-Darcy equations. We develop two linear, decoupled, energy stable, and second-order time-marching schemes based on the “Invariant Energy Quadratization” method for nonlinear terms in the Cahn-Hilliard equation, and the projection method for the Darcy equations. Moreover, we prove the well-posedness of the linear system and their unconditional energy stabilities rigorously. We also construct a linear, decoupled, energy stable, and second-order time marching scheme by using the “Scalar Auxiliary Variable” method. Various numerical tests are presented to illustrate the stability and the accuracy of the numerical schemes and simulate the process of coarsening in binary fluid and investigate the effect of the rotating and the gravity on the Hele-Shaw cell in 2D and 3D.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-022-01388-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algebra ; Algorithms ; Binary fluids ; Boundary conditions ; Computer Science ; Darcys law ; Energy ; Navier-Stokes equations ; Numeric Computing ; Numerical Analysis ; Original Paper ; Theory of Computation ; Time marching ; Velocity</subject><ispartof>Numerical algorithms, 2023-04, Vol.92 (4), p.2275-2306</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-646882c46d148187a9985b75036f378f815978a3d2f98a6e07c4d58a33b814053</citedby><cites>FETCH-LOGICAL-c319t-646882c46d148187a9985b75036f378f815978a3d2f98a6e07c4d58a33b814053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-022-01388-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-022-01388-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Li, Yaxiang</creatorcontrib><creatorcontrib>Pan, Kejia</creatorcontrib><creatorcontrib>Yang, Xiaofeng</creatorcontrib><title>Efficient second-order, linear, decoupled and unconditionally energy stable schemes of the Cahn-Hilliard-Darcy equations for the Hele-Shaw flow</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>In this paper, we consider the numerical approximations for a hydrodynamical model of Cahn-Hilliard-Darcy equations. We develop two linear, decoupled, energy stable, and second-order time-marching schemes based on the “Invariant Energy Quadratization” method for nonlinear terms in the Cahn-Hilliard equation, and the projection method for the Darcy equations. Moreover, we prove the well-posedness of the linear system and their unconditional energy stabilities rigorously. We also construct a linear, decoupled, energy stable, and second-order time marching scheme by using the “Scalar Auxiliary Variable” method. Various numerical tests are presented to illustrate the stability and the accuracy of the numerical schemes and simulate the process of coarsening in binary fluid and investigate the effect of the rotating and the gravity on the Hele-Shaw cell in 2D and 3D.</description><subject>Accuracy</subject><subject>Algebra</subject><subject>Algorithms</subject><subject>Binary fluids</subject><subject>Boundary conditions</subject><subject>Computer Science</subject><subject>Darcys law</subject><subject>Energy</subject><subject>Navier-Stokes equations</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Theory of Computation</subject><subject>Time marching</subject><subject>Velocity</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMFqGzEQhpfSQFMnL9CToNcq1UirlfZYXLcuBHJochbyamRvUCRH2iX4KfrKke1CbjnNMHzfD_M3zRdgN8CY-l4AmJKUcU4ZCK2p-tBcglSc9ryTH-vOQFEQvf7UfC7lkbGqcXXZ_Ft5Pw4jxokUHFJ0NGWH-RsJY0Rbp6vXeR_QERsdmeORGacxRRvCgWDEvD2QMtlNQFKGHT5hIcmTaYdkaXeRrscQRpsd_WnzUIXn2R7tQnzKJ2qNAenfnX0hPqSXq-bC21Dw-v9cNA-_VvfLNb29-_1n-eOWDgL6iXZtpzUf2s5Bq0Er2_dabpRkovNCaa9B9kpb4bjvte2QqaF1sh7ERkPLpFg0X8-5-5yeZyyTeUxzrk8Vw3vQHUgBrFL8TA05lZLRm30en2w-GGDmWLw5F29q8eZUvFFVEmepVDhuMb9Fv2O9ApechlM</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Chen, Rui</creator><creator>Li, Yaxiang</creator><creator>Pan, Kejia</creator><creator>Yang, Xiaofeng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230401</creationdate><title>Efficient second-order, linear, decoupled and unconditionally energy stable schemes of the Cahn-Hilliard-Darcy equations for the Hele-Shaw flow</title><author>Chen, Rui ; Li, Yaxiang ; Pan, Kejia ; Yang, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-646882c46d148187a9985b75036f378f815978a3d2f98a6e07c4d58a33b814053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algebra</topic><topic>Algorithms</topic><topic>Binary fluids</topic><topic>Boundary conditions</topic><topic>Computer Science</topic><topic>Darcys law</topic><topic>Energy</topic><topic>Navier-Stokes equations</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Theory of Computation</topic><topic>Time marching</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Li, Yaxiang</creatorcontrib><creatorcontrib>Pan, Kejia</creatorcontrib><creatorcontrib>Yang, Xiaofeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Rui</au><au>Li, Yaxiang</au><au>Pan, Kejia</au><au>Yang, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient second-order, linear, decoupled and unconditionally energy stable schemes of the Cahn-Hilliard-Darcy equations for the Hele-Shaw flow</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>92</volume><issue>4</issue><spage>2275</spage><epage>2306</epage><pages>2275-2306</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>In this paper, we consider the numerical approximations for a hydrodynamical model of Cahn-Hilliard-Darcy equations. We develop two linear, decoupled, energy stable, and second-order time-marching schemes based on the “Invariant Energy Quadratization” method for nonlinear terms in the Cahn-Hilliard equation, and the projection method for the Darcy equations. Moreover, we prove the well-posedness of the linear system and their unconditional energy stabilities rigorously. We also construct a linear, decoupled, energy stable, and second-order time marching scheme by using the “Scalar Auxiliary Variable” method. Various numerical tests are presented to illustrate the stability and the accuracy of the numerical schemes and simulate the process of coarsening in binary fluid and investigate the effect of the rotating and the gravity on the Hele-Shaw cell in 2D and 3D.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-022-01388-7</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2023-04, Vol.92 (4), p.2275-2306 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_journals_2918615310 |
source | SpringerLink Journals |
subjects | Accuracy Algebra Algorithms Binary fluids Boundary conditions Computer Science Darcys law Energy Navier-Stokes equations Numeric Computing Numerical Analysis Original Paper Theory of Computation Time marching Velocity |
title | Efficient second-order, linear, decoupled and unconditionally energy stable schemes of the Cahn-Hilliard-Darcy equations for the Hele-Shaw flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20second-order,%20linear,%20decoupled%20and%20unconditionally%20energy%20stable%20schemes%20of%20the%20Cahn-Hilliard-Darcy%20equations%20for%20the%20Hele-Shaw%20flow&rft.jtitle=Numerical%20algorithms&rft.au=Chen,%20Rui&rft.date=2023-04-01&rft.volume=92&rft.issue=4&rft.spage=2275&rft.epage=2306&rft.pages=2275-2306&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-022-01388-7&rft_dat=%3Cproquest_cross%3E2918615310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918615310&rft_id=info:pmid/&rfr_iscdi=true |