PDE-W-methods for parabolic problems with mixed derivatives

The present work considers the numerical solution of differential equations that are obtained by space discretization (method of lines) of parabolic evolution equations. Main emphasis is put on the presence of mixed derivatives in the elliptic operator. An extension of the alternating-direction-impl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2018-07, Vol.78 (3), p.957-981
Hauptverfasser: González-Pinto, S., Hairer, E., Hernández-Abreu, D., Pérez-Rodríguez, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 981
container_issue 3
container_start_page 957
container_title Numerical algorithms
container_volume 78
creator González-Pinto, S.
Hairer, E.
Hernández-Abreu, D.
Pérez-Rodríguez, S.
description The present work considers the numerical solution of differential equations that are obtained by space discretization (method of lines) of parabolic evolution equations. Main emphasis is put on the presence of mixed derivatives in the elliptic operator. An extension of the alternating-direction-implicit (ADI) approach to this situation is presented. Our stability analysis is based on a scalar test equation that is relevant to the considered class of problems. The novel treatment of mixed derivatives is implemented in third-order W-methods. Numerical experiments and comparisons with standard methods show the efficiency of the new approach. An extension of our treatment of mixed derivatives to 3D and higher dimensional problems is outlined at the end of the article.
doi_str_mv 10.1007/s11075-017-0408-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918611523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918611523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-76b45c1f8ec6ed9bd3b20a62164433ce41f50c7a955ae9738563c5dd293954673</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC52gm2XzhSWr9gIIeFI8hm2Ttlm63Jtuq_94sK3jyNAPzPjPDg9A5kEsgRF4lACI5JiAxKYnC6gBNgEuKNRX8MPfDBJhWx-gkpRUhmaJygq6fb-f4DbehX3Y-FXUXi62NturWjSu2savWoU3FZ9Mvi7b5Cr7wITZ72zf7kE7RUW3XKZz91il6vZu_zB7w4un-cXazwI6B6LEUVckd1Co4EbyuPKsosYKCKEvGXCih5sRJqzm3QUumuGCOe08107wUkk3Rxbg3__OxC6k3q24XN_mkoRqUAOCU5RSMKRe7lGKozTY2rY3fBogZHJnRkckmzODIqMzQkUk5u3kP8W_z_9APmMlnww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918611523</pqid></control><display><type>article</type><title>PDE-W-methods for parabolic problems with mixed derivatives</title><source>SpringerLink Journals - AutoHoldings</source><creator>González-Pinto, S. ; Hairer, E. ; Hernández-Abreu, D. ; Pérez-Rodríguez, S.</creator><creatorcontrib>González-Pinto, S. ; Hairer, E. ; Hernández-Abreu, D. ; Pérez-Rodríguez, S.</creatorcontrib><description>The present work considers the numerical solution of differential equations that are obtained by space discretization (method of lines) of parabolic evolution equations. Main emphasis is put on the presence of mixed derivatives in the elliptic operator. An extension of the alternating-direction-implicit (ADI) approach to this situation is presented. Our stability analysis is based on a scalar test equation that is relevant to the considered class of problems. The novel treatment of mixed derivatives is implemented in third-order W-methods. Numerical experiments and comparisons with standard methods show the efficiency of the new approach. An extension of our treatment of mixed derivatives to 3D and higher dimensional problems is outlined at the end of the article.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-017-0408-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Approximation ; Boundary conditions ; Computer Science ; Mathematical analysis ; Method of lines ; Methods ; Numeric Computing ; Numerical Analysis ; Numerical methods ; Ordinary differential equations ; Original Paper ; Partial differential equations ; Stability analysis ; Theory of Computation</subject><ispartof>Numerical algorithms, 2018-07, Vol.78 (3), p.957-981</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Springer Science+Business Media, LLC 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-76b45c1f8ec6ed9bd3b20a62164433ce41f50c7a955ae9738563c5dd293954673</citedby><cites>FETCH-LOGICAL-c316t-76b45c1f8ec6ed9bd3b20a62164433ce41f50c7a955ae9738563c5dd293954673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-017-0408-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-017-0408-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>González-Pinto, S.</creatorcontrib><creatorcontrib>Hairer, E.</creatorcontrib><creatorcontrib>Hernández-Abreu, D.</creatorcontrib><creatorcontrib>Pérez-Rodríguez, S.</creatorcontrib><title>PDE-W-methods for parabolic problems with mixed derivatives</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>The present work considers the numerical solution of differential equations that are obtained by space discretization (method of lines) of parabolic evolution equations. Main emphasis is put on the presence of mixed derivatives in the elliptic operator. An extension of the alternating-direction-implicit (ADI) approach to this situation is presented. Our stability analysis is based on a scalar test equation that is relevant to the considered class of problems. The novel treatment of mixed derivatives is implemented in third-order W-methods. Numerical experiments and comparisons with standard methods show the efficiency of the new approach. An extension of our treatment of mixed derivatives to 3D and higher dimensional problems is outlined at the end of the article.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Computer Science</subject><subject>Mathematical analysis</subject><subject>Method of lines</subject><subject>Methods</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Numerical methods</subject><subject>Ordinary differential equations</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Stability analysis</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC52gm2XzhSWr9gIIeFI8hm2Ttlm63Jtuq_94sK3jyNAPzPjPDg9A5kEsgRF4lACI5JiAxKYnC6gBNgEuKNRX8MPfDBJhWx-gkpRUhmaJygq6fb-f4DbehX3Y-FXUXi62NturWjSu2savWoU3FZ9Mvi7b5Cr7wITZ72zf7kE7RUW3XKZz91il6vZu_zB7w4un-cXazwI6B6LEUVckd1Co4EbyuPKsosYKCKEvGXCih5sRJqzm3QUumuGCOe08107wUkk3Rxbg3__OxC6k3q24XN_mkoRqUAOCU5RSMKRe7lGKozTY2rY3fBogZHJnRkckmzODIqMzQkUk5u3kP8W_z_9APmMlnww</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>González-Pinto, S.</creator><creator>Hairer, E.</creator><creator>Hernández-Abreu, D.</creator><creator>Pérez-Rodríguez, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20180701</creationdate><title>PDE-W-methods for parabolic problems with mixed derivatives</title><author>González-Pinto, S. ; Hairer, E. ; Hernández-Abreu, D. ; Pérez-Rodríguez, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-76b45c1f8ec6ed9bd3b20a62164433ce41f50c7a955ae9738563c5dd293954673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Computer Science</topic><topic>Mathematical analysis</topic><topic>Method of lines</topic><topic>Methods</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Numerical methods</topic><topic>Ordinary differential equations</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Stability analysis</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Pinto, S.</creatorcontrib><creatorcontrib>Hairer, E.</creatorcontrib><creatorcontrib>Hernández-Abreu, D.</creatorcontrib><creatorcontrib>Pérez-Rodríguez, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Pinto, S.</au><au>Hairer, E.</au><au>Hernández-Abreu, D.</au><au>Pérez-Rodríguez, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PDE-W-methods for parabolic problems with mixed derivatives</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>78</volume><issue>3</issue><spage>957</spage><epage>981</epage><pages>957-981</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>The present work considers the numerical solution of differential equations that are obtained by space discretization (method of lines) of parabolic evolution equations. Main emphasis is put on the presence of mixed derivatives in the elliptic operator. An extension of the alternating-direction-implicit (ADI) approach to this situation is presented. Our stability analysis is based on a scalar test equation that is relevant to the considered class of problems. The novel treatment of mixed derivatives is implemented in third-order W-methods. Numerical experiments and comparisons with standard methods show the efficiency of the new approach. An extension of our treatment of mixed derivatives to 3D and higher dimensional problems is outlined at the end of the article.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-017-0408-8</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2018-07, Vol.78 (3), p.957-981
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918611523
source SpringerLink Journals - AutoHoldings
subjects Algebra
Algorithms
Approximation
Boundary conditions
Computer Science
Mathematical analysis
Method of lines
Methods
Numeric Computing
Numerical Analysis
Numerical methods
Ordinary differential equations
Original Paper
Partial differential equations
Stability analysis
Theory of Computation
title PDE-W-methods for parabolic problems with mixed derivatives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PDE-W-methods%20for%20parabolic%20problems%20with%20mixed%20derivatives&rft.jtitle=Numerical%20algorithms&rft.au=Gonz%C3%A1lez-Pinto,%20S.&rft.date=2018-07-01&rft.volume=78&rft.issue=3&rft.spage=957&rft.epage=981&rft.pages=957-981&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-017-0408-8&rft_dat=%3Cproquest_cross%3E2918611523%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918611523&rft_id=info:pmid/&rfr_iscdi=true