Identify crystal structures by a new paradigm based on graph theory for building materials big data

Material identification technique is crucial to the development of structure chemistry and materials genome project. Current methods are promising candidates to identify structures effectively, but have limited ability to deal with all structures accurately and automatically in the big materials dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Chemistry 2019-08, Vol.62 (8), p.982-986
Hauptverfasser: Weng, Mouyi, Wang, Zhi, Qian, Guoyu, Ye, Yaokun, Chen, Zhefeng, Chen, Xin, Zheng, Shisheng, Pan, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 986
container_issue 8
container_start_page 982
container_title Science China. Chemistry
container_volume 62
creator Weng, Mouyi
Wang, Zhi
Qian, Guoyu
Ye, Yaokun
Chen, Zhefeng
Chen, Xin
Zheng, Shisheng
Pan, Feng
description Material identification technique is crucial to the development of structure chemistry and materials genome project. Current methods are promising candidates to identify structures effectively, but have limited ability to deal with all structures accurately and automatically in the big materials database because different material resources and various measurement errors lead to variation of bond length and bond angle. To address this issue, we propose a new paradigm based on graph theory (GT scheme) to improve the efficiency and accuracy of material identification, which focuses on processing the “topological relationship” rather than the value of bond length and bond angle among different structures. By using this method, automatic deduplication for big materials database is achieved for the first time, which identifies 626,772 unique structures from 865,458 original structures. Moreover, the graph theory scheme has been modified to solve some advanced problems such as identifying highly distorted structures, distinguishing structures with strong similarity and classifying complex crystal structures in materials big data.
doi_str_mv 10.1007/s11426-019-9502-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918610065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918610065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-57b0422d220fd8ae56d9ac18635054911631556d026dcae14765529b4084d9503</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOOg8gLuA62hu2qTtUgZ_Bgbc6DqkTdrJMNPWmxTp25uhgiuzSW4451zOR8gd8AfgvHgMALlQjEPFKskFkxdkBaWqGJQFv0xvVeSsEBVck3UIB55OlnFRyBVpttb10bczbXAO0RxpiDg1cUIXaD1TQ3v3TUeDxvruRGsTnKVDTzs0457GvRtwpu2AtJ780fq-oycTHXpzTHbfUWuiuSVXbZrd-ve-IZ8vzx-bN7Z7f91unnasyUBFJoua50JYIXhrS-OkspVpUo9McplXACoDmT65ULYxDvJCSSmqOudlblPv7IbcL7kjDl-TC1Efhgn7tFKn7qVKrJRMKlhUDQ4hoGv1iP5kcNbA9RmnXnDqhFOfceqzRyyekLR95_Av-X_TDycRdnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918610065</pqid></control><display><type>article</type><title>Identify crystal structures by a new paradigm based on graph theory for building materials big data</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Weng, Mouyi ; Wang, Zhi ; Qian, Guoyu ; Ye, Yaokun ; Chen, Zhefeng ; Chen, Xin ; Zheng, Shisheng ; Pan, Feng</creator><creatorcontrib>Weng, Mouyi ; Wang, Zhi ; Qian, Guoyu ; Ye, Yaokun ; Chen, Zhefeng ; Chen, Xin ; Zheng, Shisheng ; Pan, Feng</creatorcontrib><description>Material identification technique is crucial to the development of structure chemistry and materials genome project. Current methods are promising candidates to identify structures effectively, but have limited ability to deal with all structures accurately and automatically in the big materials database because different material resources and various measurement errors lead to variation of bond length and bond angle. To address this issue, we propose a new paradigm based on graph theory (GT scheme) to improve the efficiency and accuracy of material identification, which focuses on processing the “topological relationship” rather than the value of bond length and bond angle among different structures. By using this method, automatic deduplication for big materials database is achieved for the first time, which identifies 626,772 unique structures from 865,458 original structures. Moreover, the graph theory scheme has been modified to solve some advanced problems such as identifying highly distorted structures, distinguishing structures with strong similarity and classifying complex crystal structures in materials big data.</description><identifier>ISSN: 1674-7291</identifier><identifier>EISSN: 1869-1870</identifier><identifier>DOI: 10.1007/s11426-019-9502-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Accuracy ; Algorithms ; Big Data ; Building materials ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Cobalt ; Communications ; Construction materials ; Crystal structure ; Genomes ; Graph representations ; Graph theory ; Methods</subject><ispartof>Science China. Chemistry, 2019-08, Vol.62 (8), p.982-986</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-57b0422d220fd8ae56d9ac18635054911631556d026dcae14765529b4084d9503</citedby><cites>FETCH-LOGICAL-c316t-57b0422d220fd8ae56d9ac18635054911631556d026dcae14765529b4084d9503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11426-019-9502-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918610065?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21371,21372,21373,21374,23239,27907,27908,33513,33686,33727,33988,34297,41471,42540,43642,43770,43788,43936,44050,51302,64366,64370,72220</link.rule.ids></links><search><creatorcontrib>Weng, Mouyi</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Qian, Guoyu</creatorcontrib><creatorcontrib>Ye, Yaokun</creatorcontrib><creatorcontrib>Chen, Zhefeng</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zheng, Shisheng</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><title>Identify crystal structures by a new paradigm based on graph theory for building materials big data</title><title>Science China. Chemistry</title><addtitle>Sci. China Chem</addtitle><description>Material identification technique is crucial to the development of structure chemistry and materials genome project. Current methods are promising candidates to identify structures effectively, but have limited ability to deal with all structures accurately and automatically in the big materials database because different material resources and various measurement errors lead to variation of bond length and bond angle. To address this issue, we propose a new paradigm based on graph theory (GT scheme) to improve the efficiency and accuracy of material identification, which focuses on processing the “topological relationship” rather than the value of bond length and bond angle among different structures. By using this method, automatic deduplication for big materials database is achieved for the first time, which identifies 626,772 unique structures from 865,458 original structures. Moreover, the graph theory scheme has been modified to solve some advanced problems such as identifying highly distorted structures, distinguishing structures with strong similarity and classifying complex crystal structures in materials big data.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Big Data</subject><subject>Building materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Cobalt</subject><subject>Communications</subject><subject>Construction materials</subject><subject>Crystal structure</subject><subject>Genomes</subject><subject>Graph representations</subject><subject>Graph theory</subject><subject>Methods</subject><issn>1674-7291</issn><issn>1869-1870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1KxDAUhYMoOOg8gLuA62hu2qTtUgZ_Bgbc6DqkTdrJMNPWmxTp25uhgiuzSW4451zOR8gd8AfgvHgMALlQjEPFKskFkxdkBaWqGJQFv0xvVeSsEBVck3UIB55OlnFRyBVpttb10bczbXAO0RxpiDg1cUIXaD1TQ3v3TUeDxvruRGsTnKVDTzs0457GvRtwpu2AtJ780fq-oycTHXpzTHbfUWuiuSVXbZrd-ve-IZ8vzx-bN7Z7f91unnasyUBFJoua50JYIXhrS-OkspVpUo9McplXACoDmT65ULYxDvJCSSmqOudlblPv7IbcL7kjDl-TC1Efhgn7tFKn7qVKrJRMKlhUDQ4hoGv1iP5kcNbA9RmnXnDqhFOfceqzRyyekLR95_Av-X_TDycRdnk</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Weng, Mouyi</creator><creator>Wang, Zhi</creator><creator>Qian, Guoyu</creator><creator>Ye, Yaokun</creator><creator>Chen, Zhefeng</creator><creator>Chen, Xin</creator><creator>Zheng, Shisheng</creator><creator>Pan, Feng</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20190801</creationdate><title>Identify crystal structures by a new paradigm based on graph theory for building materials big data</title><author>Weng, Mouyi ; Wang, Zhi ; Qian, Guoyu ; Ye, Yaokun ; Chen, Zhefeng ; Chen, Xin ; Zheng, Shisheng ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-57b0422d220fd8ae56d9ac18635054911631556d026dcae14765529b4084d9503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Big Data</topic><topic>Building materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Cobalt</topic><topic>Communications</topic><topic>Construction materials</topic><topic>Crystal structure</topic><topic>Genomes</topic><topic>Graph representations</topic><topic>Graph theory</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Mouyi</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Qian, Guoyu</creatorcontrib><creatorcontrib>Ye, Yaokun</creatorcontrib><creatorcontrib>Chen, Zhefeng</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zheng, Shisheng</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Science Database (ProQuest)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Science China. Chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Mouyi</au><au>Wang, Zhi</au><au>Qian, Guoyu</au><au>Ye, Yaokun</au><au>Chen, Zhefeng</au><au>Chen, Xin</au><au>Zheng, Shisheng</au><au>Pan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identify crystal structures by a new paradigm based on graph theory for building materials big data</atitle><jtitle>Science China. Chemistry</jtitle><stitle>Sci. China Chem</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>62</volume><issue>8</issue><spage>982</spage><epage>986</epage><pages>982-986</pages><issn>1674-7291</issn><eissn>1869-1870</eissn><abstract>Material identification technique is crucial to the development of structure chemistry and materials genome project. Current methods are promising candidates to identify structures effectively, but have limited ability to deal with all structures accurately and automatically in the big materials database because different material resources and various measurement errors lead to variation of bond length and bond angle. To address this issue, we propose a new paradigm based on graph theory (GT scheme) to improve the efficiency and accuracy of material identification, which focuses on processing the “topological relationship” rather than the value of bond length and bond angle among different structures. By using this method, automatic deduplication for big materials database is achieved for the first time, which identifies 626,772 unique structures from 865,458 original structures. Moreover, the graph theory scheme has been modified to solve some advanced problems such as identifying highly distorted structures, distinguishing structures with strong similarity and classifying complex crystal structures in materials big data.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11426-019-9502-5</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7291
ispartof Science China. Chemistry, 2019-08, Vol.62 (8), p.982-986
issn 1674-7291
1869-1870
language eng
recordid cdi_proquest_journals_2918610065
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Accuracy
Algorithms
Big Data
Building materials
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Cobalt
Communications
Construction materials
Crystal structure
Genomes
Graph representations
Graph theory
Methods
title Identify crystal structures by a new paradigm based on graph theory for building materials big data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identify%20crystal%20structures%20by%20a%20new%20paradigm%20based%20on%20graph%20theory%20for%20building%20materials%20big%20data&rft.jtitle=Science%20China.%20Chemistry&rft.au=Weng,%20Mouyi&rft.date=2019-08-01&rft.volume=62&rft.issue=8&rft.spage=982&rft.epage=986&rft.pages=982-986&rft.issn=1674-7291&rft.eissn=1869-1870&rft_id=info:doi/10.1007/s11426-019-9502-5&rft_dat=%3Cproquest_cross%3E2918610065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918610065&rft_id=info:pmid/&rfr_iscdi=true