Identify crystal structures by a new paradigm based on graph theory for building materials big data
Material identification technique is crucial to the development of structure chemistry and materials genome project. Current methods are promising candidates to identify structures effectively, but have limited ability to deal with all structures accurately and automatically in the big materials dat...
Gespeichert in:
Veröffentlicht in: | Science China. Chemistry 2019-08, Vol.62 (8), p.982-986 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 986 |
---|---|
container_issue | 8 |
container_start_page | 982 |
container_title | Science China. Chemistry |
container_volume | 62 |
creator | Weng, Mouyi Wang, Zhi Qian, Guoyu Ye, Yaokun Chen, Zhefeng Chen, Xin Zheng, Shisheng Pan, Feng |
description | Material identification technique is crucial to the development of structure chemistry and materials genome project. Current methods are promising candidates to identify structures effectively, but have limited ability to deal with all structures accurately and automatically in the big materials database because different material resources and various measurement errors lead to variation of bond length and bond angle. To address this issue, we propose a new paradigm based on graph theory (GT scheme) to improve the efficiency and accuracy of material identification, which focuses on processing the “topological relationship” rather than the value of bond length and bond angle among different structures. By using this method, automatic deduplication for big materials database is achieved for the first time, which identifies 626,772 unique structures from 865,458 original structures. Moreover, the graph theory scheme has been modified to solve some advanced problems such as identifying highly distorted structures, distinguishing structures with strong similarity and classifying complex crystal structures in materials big data. |
doi_str_mv | 10.1007/s11426-019-9502-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918610065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918610065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-57b0422d220fd8ae56d9ac18635054911631556d026dcae14765529b4084d9503</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOOg8gLuA62hu2qTtUgZ_Bgbc6DqkTdrJMNPWmxTp25uhgiuzSW4451zOR8gd8AfgvHgMALlQjEPFKskFkxdkBaWqGJQFv0xvVeSsEBVck3UIB55OlnFRyBVpttb10bczbXAO0RxpiDg1cUIXaD1TQ3v3TUeDxvruRGsTnKVDTzs0457GvRtwpu2AtJ780fq-oycTHXpzTHbfUWuiuSVXbZrd-ve-IZ8vzx-bN7Z7f91unnasyUBFJoua50JYIXhrS-OkspVpUo9McplXACoDmT65ULYxDvJCSSmqOudlblPv7IbcL7kjDl-TC1Efhgn7tFKn7qVKrJRMKlhUDQ4hoGv1iP5kcNbA9RmnXnDqhFOfceqzRyyekLR95_Av-X_TDycRdnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918610065</pqid></control><display><type>article</type><title>Identify crystal structures by a new paradigm based on graph theory for building materials big data</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Weng, Mouyi ; Wang, Zhi ; Qian, Guoyu ; Ye, Yaokun ; Chen, Zhefeng ; Chen, Xin ; Zheng, Shisheng ; Pan, Feng</creator><creatorcontrib>Weng, Mouyi ; Wang, Zhi ; Qian, Guoyu ; Ye, Yaokun ; Chen, Zhefeng ; Chen, Xin ; Zheng, Shisheng ; Pan, Feng</creatorcontrib><description>Material identification technique is crucial to the development of structure chemistry and materials genome project. Current methods are promising candidates to identify structures effectively, but have limited ability to deal with all structures accurately and automatically in the big materials database because different material resources and various measurement errors lead to variation of bond length and bond angle. To address this issue, we propose a new paradigm based on graph theory (GT scheme) to improve the efficiency and accuracy of material identification, which focuses on processing the “topological relationship” rather than the value of bond length and bond angle among different structures. By using this method, automatic deduplication for big materials database is achieved for the first time, which identifies 626,772 unique structures from 865,458 original structures. Moreover, the graph theory scheme has been modified to solve some advanced problems such as identifying highly distorted structures, distinguishing structures with strong similarity and classifying complex crystal structures in materials big data.</description><identifier>ISSN: 1674-7291</identifier><identifier>EISSN: 1869-1870</identifier><identifier>DOI: 10.1007/s11426-019-9502-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Accuracy ; Algorithms ; Big Data ; Building materials ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Cobalt ; Communications ; Construction materials ; Crystal structure ; Genomes ; Graph representations ; Graph theory ; Methods</subject><ispartof>Science China. Chemistry, 2019-08, Vol.62 (8), p.982-986</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-57b0422d220fd8ae56d9ac18635054911631556d026dcae14765529b4084d9503</citedby><cites>FETCH-LOGICAL-c316t-57b0422d220fd8ae56d9ac18635054911631556d026dcae14765529b4084d9503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11426-019-9502-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918610065?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21371,21372,21373,21374,23239,27907,27908,33513,33686,33727,33988,34297,41471,42540,43642,43770,43788,43936,44050,51302,64366,64370,72220</link.rule.ids></links><search><creatorcontrib>Weng, Mouyi</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Qian, Guoyu</creatorcontrib><creatorcontrib>Ye, Yaokun</creatorcontrib><creatorcontrib>Chen, Zhefeng</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zheng, Shisheng</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><title>Identify crystal structures by a new paradigm based on graph theory for building materials big data</title><title>Science China. Chemistry</title><addtitle>Sci. China Chem</addtitle><description>Material identification technique is crucial to the development of structure chemistry and materials genome project. Current methods are promising candidates to identify structures effectively, but have limited ability to deal with all structures accurately and automatically in the big materials database because different material resources and various measurement errors lead to variation of bond length and bond angle. To address this issue, we propose a new paradigm based on graph theory (GT scheme) to improve the efficiency and accuracy of material identification, which focuses on processing the “topological relationship” rather than the value of bond length and bond angle among different structures. By using this method, automatic deduplication for big materials database is achieved for the first time, which identifies 626,772 unique structures from 865,458 original structures. Moreover, the graph theory scheme has been modified to solve some advanced problems such as identifying highly distorted structures, distinguishing structures with strong similarity and classifying complex crystal structures in materials big data.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Big Data</subject><subject>Building materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Cobalt</subject><subject>Communications</subject><subject>Construction materials</subject><subject>Crystal structure</subject><subject>Genomes</subject><subject>Graph representations</subject><subject>Graph theory</subject><subject>Methods</subject><issn>1674-7291</issn><issn>1869-1870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1KxDAUhYMoOOg8gLuA62hu2qTtUgZ_Bgbc6DqkTdrJMNPWmxTp25uhgiuzSW4451zOR8gd8AfgvHgMALlQjEPFKskFkxdkBaWqGJQFv0xvVeSsEBVck3UIB55OlnFRyBVpttb10bczbXAO0RxpiDg1cUIXaD1TQ3v3TUeDxvruRGsTnKVDTzs0457GvRtwpu2AtJ780fq-oycTHXpzTHbfUWuiuSVXbZrd-ve-IZ8vzx-bN7Z7f91unnasyUBFJoua50JYIXhrS-OkspVpUo9McplXACoDmT65ULYxDvJCSSmqOudlblPv7IbcL7kjDl-TC1Efhgn7tFKn7qVKrJRMKlhUDQ4hoGv1iP5kcNbA9RmnXnDqhFOfceqzRyyekLR95_Av-X_TDycRdnk</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Weng, Mouyi</creator><creator>Wang, Zhi</creator><creator>Qian, Guoyu</creator><creator>Ye, Yaokun</creator><creator>Chen, Zhefeng</creator><creator>Chen, Xin</creator><creator>Zheng, Shisheng</creator><creator>Pan, Feng</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20190801</creationdate><title>Identify crystal structures by a new paradigm based on graph theory for building materials big data</title><author>Weng, Mouyi ; Wang, Zhi ; Qian, Guoyu ; Ye, Yaokun ; Chen, Zhefeng ; Chen, Xin ; Zheng, Shisheng ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-57b0422d220fd8ae56d9ac18635054911631556d026dcae14765529b4084d9503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Big Data</topic><topic>Building materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Cobalt</topic><topic>Communications</topic><topic>Construction materials</topic><topic>Crystal structure</topic><topic>Genomes</topic><topic>Graph representations</topic><topic>Graph theory</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Mouyi</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Qian, Guoyu</creatorcontrib><creatorcontrib>Ye, Yaokun</creatorcontrib><creatorcontrib>Chen, Zhefeng</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zheng, Shisheng</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Science Database (ProQuest)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Science China. Chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Mouyi</au><au>Wang, Zhi</au><au>Qian, Guoyu</au><au>Ye, Yaokun</au><au>Chen, Zhefeng</au><au>Chen, Xin</au><au>Zheng, Shisheng</au><au>Pan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identify crystal structures by a new paradigm based on graph theory for building materials big data</atitle><jtitle>Science China. Chemistry</jtitle><stitle>Sci. China Chem</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>62</volume><issue>8</issue><spage>982</spage><epage>986</epage><pages>982-986</pages><issn>1674-7291</issn><eissn>1869-1870</eissn><abstract>Material identification technique is crucial to the development of structure chemistry and materials genome project. Current methods are promising candidates to identify structures effectively, but have limited ability to deal with all structures accurately and automatically in the big materials database because different material resources and various measurement errors lead to variation of bond length and bond angle. To address this issue, we propose a new paradigm based on graph theory (GT scheme) to improve the efficiency and accuracy of material identification, which focuses on processing the “topological relationship” rather than the value of bond length and bond angle among different structures. By using this method, automatic deduplication for big materials database is achieved for the first time, which identifies 626,772 unique structures from 865,458 original structures. Moreover, the graph theory scheme has been modified to solve some advanced problems such as identifying highly distorted structures, distinguishing structures with strong similarity and classifying complex crystal structures in materials big data.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11426-019-9502-5</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7291 |
ispartof | Science China. Chemistry, 2019-08, Vol.62 (8), p.982-986 |
issn | 1674-7291 1869-1870 |
language | eng |
recordid | cdi_proquest_journals_2918610065 |
source | ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Accuracy Algorithms Big Data Building materials Chemistry Chemistry and Materials Science Chemistry/Food Science Cobalt Communications Construction materials Crystal structure Genomes Graph representations Graph theory Methods |
title | Identify crystal structures by a new paradigm based on graph theory for building materials big data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identify%20crystal%20structures%20by%20a%20new%20paradigm%20based%20on%20graph%20theory%20for%20building%20materials%20big%20data&rft.jtitle=Science%20China.%20Chemistry&rft.au=Weng,%20Mouyi&rft.date=2019-08-01&rft.volume=62&rft.issue=8&rft.spage=982&rft.epage=986&rft.pages=982-986&rft.issn=1674-7291&rft.eissn=1869-1870&rft_id=info:doi/10.1007/s11426-019-9502-5&rft_dat=%3Cproquest_cross%3E2918610065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918610065&rft_id=info:pmid/&rfr_iscdi=true |