Exponential distance distribution of connected neurons in simulations of two-dimensional in vitro neural network development
The distribution of the geometric distances of connected neurons is a practical factor underlying neural networks in the brain. It can affect the brain's dynamic properties at the ground level. Karbowski derived a power-law decay distribution that has not yet been verified by experiment. In this wor...
Gespeichert in:
Veröffentlicht in: | Frontiers of physics 2017-06, Vol.12 (3), p.133-138, Article 128902 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The distribution of the geometric distances of connected neurons is a practical factor underlying neural networks in the brain. It can affect the brain's dynamic properties at the ground level. Karbowski derived a power-law decay distribution that has not yet been verified by experiment. In this work, we check its validity using simulations with a phenomenological model. Based on the in vitro two- dimensional development of neural networks in culture vessels by Ito, we match the synapse number saturation time to obtain suitable parameters for the development process, then determine the distri-bution of distances between connected neurons under such conditions. Our simulations obtain a clear exponential distribution instead of a power-law one, which indicates that Karbowski's conclusion is invalid, at least for the case of in vitro neural network development in two-dimensional culture vessels. |
---|---|
ISSN: | 2095-0462 2095-0470 |
DOI: | 10.1007/s11467-017-0602-0 |