Improvement of some bounds on the stability of fast Helmholtz solvers

Three fast Helmholtz solvers based on the Fast Fourier Transform are studied with respect to their stability. It is proved that they are strongly stable, and that the backward relative errors can grow at most like O(log 2n)ρ0, where ρ0 is the machine roundoff unit.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2001-01, Vol.26 (1), p.11-20
1. Verfasser: Yalamov, Plamen Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 1
container_start_page 11
container_title Numerical algorithms
container_volume 26
creator Yalamov, Plamen Y
description Three fast Helmholtz solvers based on the Fast Fourier Transform are studied with respect to their stability. It is proved that they are strongly stable, and that the backward relative errors can grow at most like O(log 2n)ρ0, where ρ0 is the machine roundoff unit.
doi_str_mv 10.1023/A:1016692312901
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2918606428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918606428</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-544624a3e2017ab2842f24604546a29641955c8033288f8eb5287d2000f3c3e23</originalsourceid><addsrcrecordid>eNotTstKAzEUDaJgra7dBlyP3nvzmMRdKdUWCm50XTJtQltmJnWSKejXG9HVOXCejN0jPCKQeJo9I6DWlgSSBbxgE1Q1VZa0uiwcsK5QWHPNblI6AiAA1RO2WHWnIZ595_vMY-Apdp43cex3icee573nKbvm0B7y168eXMp86dtuH9v8Xezt2Q_pll0F1yZ_949T9vGyeJ8vq_Xb62o-W1cnNJgrJaUm6YSn8sY1ZCQFkhqkktqR1RKtUlsDQpAxwfhGkal3BABBbEtKTNnDX2_5_Dn6lDfHOA59mdyQRaNBSzLiB_TrSxc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918606428</pqid></control><display><type>article</type><title>Improvement of some bounds on the stability of fast Helmholtz solvers</title><source>Springer Nature - Complete Springer Journals</source><creator>Yalamov, Plamen Y</creator><creatorcontrib>Yalamov, Plamen Y</creatorcontrib><description>Three fast Helmholtz solvers based on the Fast Fourier Transform are studied with respect to their stability. It is proved that they are strongly stable, and that the backward relative errors can grow at most like O(log 2n)ρ0, where ρ0 is the machine roundoff unit.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1023/A:1016692312901</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Fast Fourier transformations ; Solvers ; Stability</subject><ispartof>Numerical algorithms, 2001-01, Vol.26 (1), p.11-20</ispartof><rights>Kluwer Academic Publishers 2001.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yalamov, Plamen Y</creatorcontrib><title>Improvement of some bounds on the stability of fast Helmholtz solvers</title><title>Numerical algorithms</title><description>Three fast Helmholtz solvers based on the Fast Fourier Transform are studied with respect to their stability. It is proved that they are strongly stable, and that the backward relative errors can grow at most like O(log 2n)ρ0, where ρ0 is the machine roundoff unit.</description><subject>Fast Fourier transformations</subject><subject>Solvers</subject><subject>Stability</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotTstKAzEUDaJgra7dBlyP3nvzmMRdKdUWCm50XTJtQltmJnWSKejXG9HVOXCejN0jPCKQeJo9I6DWlgSSBbxgE1Q1VZa0uiwcsK5QWHPNblI6AiAA1RO2WHWnIZ595_vMY-Apdp43cex3icee573nKbvm0B7y168eXMp86dtuH9v8Xezt2Q_pll0F1yZ_949T9vGyeJ8vq_Xb62o-W1cnNJgrJaUm6YSn8sY1ZCQFkhqkktqR1RKtUlsDQpAxwfhGkal3BABBbEtKTNnDX2_5_Dn6lDfHOA59mdyQRaNBSzLiB_TrSxc</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Yalamov, Plamen Y</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20010101</creationdate><title>Improvement of some bounds on the stability of fast Helmholtz solvers</title><author>Yalamov, Plamen Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-544624a3e2017ab2842f24604546a29641955c8033288f8eb5287d2000f3c3e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Fast Fourier transformations</topic><topic>Solvers</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yalamov, Plamen Y</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yalamov, Plamen Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of some bounds on the stability of fast Helmholtz solvers</atitle><jtitle>Numerical algorithms</jtitle><date>2001-01-01</date><risdate>2001</risdate><volume>26</volume><issue>1</issue><spage>11</spage><epage>20</epage><pages>11-20</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>Three fast Helmholtz solvers based on the Fast Fourier Transform are studied with respect to their stability. It is proved that they are strongly stable, and that the backward relative errors can grow at most like O(log 2n)ρ0, where ρ0 is the machine roundoff unit.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1016692312901</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2001-01, Vol.26 (1), p.11-20
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918606428
source Springer Nature - Complete Springer Journals
subjects Fast Fourier transformations
Solvers
Stability
title Improvement of some bounds on the stability of fast Helmholtz solvers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A35%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20some%20bounds%20on%20the%20stability%20of%20fast%20Helmholtz%20solvers&rft.jtitle=Numerical%20algorithms&rft.au=Yalamov,%20Plamen%20Y&rft.date=2001-01-01&rft.volume=26&rft.issue=1&rft.spage=11&rft.epage=20&rft.pages=11-20&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1023/A:1016692312901&rft_dat=%3Cproquest%3E2918606428%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918606428&rft_id=info:pmid/&rfr_iscdi=true