Binarization of the Swallow Swarm Optimization for Feature Selection

In this paper, we propose six methods for binarization of the swallow swarm optimization (SSO) algorithm to solve the feature selection problem. The relevance of the selected feature subsets is estimated by two classifiers: a fuzzy rule-based classifier and a classifier based on k -nearest neighbors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Programming and computer software 2021-09, Vol.47 (5), p.374-388
Hauptverfasser: Slezkin, A. O., Hodashinsky, I. A., Shelupanov, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 5
container_start_page 374
container_title Programming and computer software
container_volume 47
creator Slezkin, A. O.
Hodashinsky, I. A.
Shelupanov, A. A.
description In this paper, we propose six methods for binarization of the swallow swarm optimization (SSO) algorithm to solve the feature selection problem. The relevance of the selected feature subsets is estimated by two classifiers: a fuzzy rule-based classifier and a classifier based on k -nearest neighbors. To find an optimal subset of features, we take into account the number of features and classification accuracy. The developed algorithms are tested on datasets from the KEEL repository. For the statistical evaluation of the binarization methods, we use Friedman’s two-way analysis of variance by ranks for related samples. The best feature selection result is shown by a hybrid method based on modified algebraic operations and MERGE operation introduced by the authors of this paper. The best classification accuracy is achieved with a V-shaped transfer function.
doi_str_mv 10.1134/S0361768821050066
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918596090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918596090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6b34b71849f51fb878b8e8fd54882162444db97d35ebe1c9903e0474d0d624583</originalsourceid><addsrcrecordid>eNp1kEFPhDAQhRujiYj-AG8kntEZWko56uqqySZ7WD2TAq2yAbq2kI3--i1B48F4mmTe-95MHiGXCNeIlN1sgHLMuBAJQgrA-REJkIOIacLxmASTHE_6KTlzbguAAIwF5P6u6aVtvuTQmD4yOhreVbTZy7Y1-2naLlrvhqb7cWhjo6WSw2i9TbWqmrbn5ETL1qmL7xmS1-XDy-IpXq0fnxe3q7iiyIeYl5SVGQqW6xR1KTJRCiV0nbLpbZ4wxuoyz2qaqlJhledAFbCM1VB7MRU0JFdz7s6aj1G5odia0fb-ZJHkKNKcg2dCgrOrssY5q3Sxs00n7WeBUExlFX_K8kwyM857-zdlf5P_hw4SP2nt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918596090</pqid></control><display><type>article</type><title>Binarization of the Swallow Swarm Optimization for Feature Selection</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Slezkin, A. O. ; Hodashinsky, I. A. ; Shelupanov, A. A.</creator><creatorcontrib>Slezkin, A. O. ; Hodashinsky, I. A. ; Shelupanov, A. A.</creatorcontrib><description>In this paper, we propose six methods for binarization of the swallow swarm optimization (SSO) algorithm to solve the feature selection problem. The relevance of the selected feature subsets is estimated by two classifiers: a fuzzy rule-based classifier and a classifier based on k -nearest neighbors. To find an optimal subset of features, we take into account the number of features and classification accuracy. The developed algorithms are tested on datasets from the KEEL repository. For the statistical evaluation of the binarization methods, we use Friedman’s two-way analysis of variance by ranks for related samples. The best feature selection result is shown by a hybrid method based on modified algebraic operations and MERGE operation introduced by the authors of this paper. The best classification accuracy is achieved with a V-shaped transfer function.</description><identifier>ISSN: 0361-7688</identifier><identifier>EISSN: 1608-3261</identifier><identifier>DOI: 10.1134/S0361768821050066</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Artificial Intelligence ; Classification ; Classifiers ; Computer Science ; Datasets ; Efficiency ; Feature selection ; Machine learning ; Methods ; Operating Systems ; Optimization ; Software Engineering ; Software Engineering/Programming and Operating Systems ; Transfer functions ; Variance analysis</subject><ispartof>Programming and computer software, 2021-09, Vol.47 (5), p.374-388</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 0361-7688, Programming and Computer Software, 2021, Vol. 47, No. 5, pp. 374–388. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Programmirovanie, 2021, Vol. 47, No. 5.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6b34b71849f51fb878b8e8fd54882162444db97d35ebe1c9903e0474d0d624583</citedby><cites>FETCH-LOGICAL-c316t-6b34b71849f51fb878b8e8fd54882162444db97d35ebe1c9903e0474d0d624583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0361768821050066$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918596090?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Slezkin, A. O.</creatorcontrib><creatorcontrib>Hodashinsky, I. A.</creatorcontrib><creatorcontrib>Shelupanov, A. A.</creatorcontrib><title>Binarization of the Swallow Swarm Optimization for Feature Selection</title><title>Programming and computer software</title><addtitle>Program Comput Soft</addtitle><description>In this paper, we propose six methods for binarization of the swallow swarm optimization (SSO) algorithm to solve the feature selection problem. The relevance of the selected feature subsets is estimated by two classifiers: a fuzzy rule-based classifier and a classifier based on k -nearest neighbors. To find an optimal subset of features, we take into account the number of features and classification accuracy. The developed algorithms are tested on datasets from the KEEL repository. For the statistical evaluation of the binarization methods, we use Friedman’s two-way analysis of variance by ranks for related samples. The best feature selection result is shown by a hybrid method based on modified algebraic operations and MERGE operation introduced by the authors of this paper. The best classification accuracy is achieved with a V-shaped transfer function.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Efficiency</subject><subject>Feature selection</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Operating Systems</subject><subject>Optimization</subject><subject>Software Engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Transfer functions</subject><subject>Variance analysis</subject><issn>0361-7688</issn><issn>1608-3261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFPhDAQhRujiYj-AG8kntEZWko56uqqySZ7WD2TAq2yAbq2kI3--i1B48F4mmTe-95MHiGXCNeIlN1sgHLMuBAJQgrA-REJkIOIacLxmASTHE_6KTlzbguAAIwF5P6u6aVtvuTQmD4yOhreVbTZy7Y1-2naLlrvhqb7cWhjo6WSw2i9TbWqmrbn5ETL1qmL7xmS1-XDy-IpXq0fnxe3q7iiyIeYl5SVGQqW6xR1KTJRCiV0nbLpbZ4wxuoyz2qaqlJhledAFbCM1VB7MRU0JFdz7s6aj1G5odia0fb-ZJHkKNKcg2dCgrOrssY5q3Sxs00n7WeBUExlFX_K8kwyM857-zdlf5P_hw4SP2nt</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Slezkin, A. O.</creator><creator>Hodashinsky, I. A.</creator><creator>Shelupanov, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210901</creationdate><title>Binarization of the Swallow Swarm Optimization for Feature Selection</title><author>Slezkin, A. O. ; Hodashinsky, I. A. ; Shelupanov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6b34b71849f51fb878b8e8fd54882162444db97d35ebe1c9903e0474d0d624583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Efficiency</topic><topic>Feature selection</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Operating Systems</topic><topic>Optimization</topic><topic>Software Engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Transfer functions</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slezkin, A. O.</creatorcontrib><creatorcontrib>Hodashinsky, I. A.</creatorcontrib><creatorcontrib>Shelupanov, A. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Programming and computer software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slezkin, A. O.</au><au>Hodashinsky, I. A.</au><au>Shelupanov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binarization of the Swallow Swarm Optimization for Feature Selection</atitle><jtitle>Programming and computer software</jtitle><stitle>Program Comput Soft</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>47</volume><issue>5</issue><spage>374</spage><epage>388</epage><pages>374-388</pages><issn>0361-7688</issn><eissn>1608-3261</eissn><abstract>In this paper, we propose six methods for binarization of the swallow swarm optimization (SSO) algorithm to solve the feature selection problem. The relevance of the selected feature subsets is estimated by two classifiers: a fuzzy rule-based classifier and a classifier based on k -nearest neighbors. To find an optimal subset of features, we take into account the number of features and classification accuracy. The developed algorithms are tested on datasets from the KEEL repository. For the statistical evaluation of the binarization methods, we use Friedman’s two-way analysis of variance by ranks for related samples. The best feature selection result is shown by a hybrid method based on modified algebraic operations and MERGE operation introduced by the authors of this paper. The best classification accuracy is achieved with a V-shaped transfer function.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0361768821050066</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-7688
ispartof Programming and computer software, 2021-09, Vol.47 (5), p.374-388
issn 0361-7688
1608-3261
language eng
recordid cdi_proquest_journals_2918596090
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Artificial Intelligence
Classification
Classifiers
Computer Science
Datasets
Efficiency
Feature selection
Machine learning
Methods
Operating Systems
Optimization
Software Engineering
Software Engineering/Programming and Operating Systems
Transfer functions
Variance analysis
title Binarization of the Swallow Swarm Optimization for Feature Selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binarization%20of%20the%20Swallow%20Swarm%20Optimization%20for%20Feature%20Selection&rft.jtitle=Programming%20and%20computer%20software&rft.au=Slezkin,%20A.%20O.&rft.date=2021-09-01&rft.volume=47&rft.issue=5&rft.spage=374&rft.epage=388&rft.pages=374-388&rft.issn=0361-7688&rft.eissn=1608-3261&rft_id=info:doi/10.1134/S0361768821050066&rft_dat=%3Cproquest_cross%3E2918596090%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918596090&rft_id=info:pmid/&rfr_iscdi=true