Control of bidirectional physical human–robot interaction based on the human intention
This paper presents a control strategy for human–robot interaction with physical contact, recognizing the human intention to control the movement of a non-holonomic mobile robot. The human intention is modeled by mechanical impedance, sensing the human-desired force intensity and the human-desired f...
Gespeichert in:
Veröffentlicht in: | Intelligent service robotics 2017, Vol.10 (1), p.31-40 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | Intelligent service robotics |
container_volume | 10 |
creator | Leica, Paulo Roberti, Flavio Monllor, Matías Toibero, Juan M. Carelli, Ricardo |
description | This paper presents a control strategy for human–robot interaction with physical contact, recognizing the human intention to control the movement of a non-holonomic mobile robot. The human intention is modeled by mechanical impedance, sensing the human-desired force intensity and the human-desired force direction to guide the robot through unstructured environments. Robot dynamics is included to improve the interaction performance. Stability analysis of the proposed control system is proved by using Lyapunov theory. Real experiments of the human–robot interaction show the performance of the proposed controllers. |
doi_str_mv | 10.1007/s11370-016-0207-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918595029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918595029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ebf32ff50ee92ba03eba00c29d9b6ed5f5cf61a8e804178937720e1b727ddf733</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEuXnAOwisTbM2EmcLFHFn1SJDUjsLCcZ01RtXGx30R134IacBLdBsGIz86T3vZHmMXaBcIUA6jogSgUcsOQgQPH8gE2wKpELVeWHv1qVx-wkhAVAibmQE_Y6dUP0bpk5mzV913tqY-8Gs8zW823o2yTmm5UZvj4-vWtczPohkjd7KGtMoC5LIs5pxPb2sDPP2JE1y0DnP_uUvdzdPk8f-Ozp_nF6M-OtxDJyaqwU1hZAVIvGgKQ0oBV1VzcldYUtWluiqaiCHFVVS6UEEDZKqK6zSspTdjneXXv3vqEQ9cJtfHogaFFjVdQFiDpROFKtdyF4snrt-5XxW42gdwXqsUCdCtS7AnWeMmLMhMQOb-T_Lv8f-gZ4U3Vs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918595029</pqid></control><display><type>article</type><title>Control of bidirectional physical human–robot interaction based on the human intention</title><source>SpringerLink</source><source>ProQuest Central</source><creator>Leica, Paulo ; Roberti, Flavio ; Monllor, Matías ; Toibero, Juan M. ; Carelli, Ricardo</creator><creatorcontrib>Leica, Paulo ; Roberti, Flavio ; Monllor, Matías ; Toibero, Juan M. ; Carelli, Ricardo</creatorcontrib><description>This paper presents a control strategy for human–robot interaction with physical contact, recognizing the human intention to control the movement of a non-holonomic mobile robot. The human intention is modeled by mechanical impedance, sensing the human-desired force intensity and the human-desired force direction to guide the robot through unstructured environments. Robot dynamics is included to improve the interaction performance. Stability analysis of the proposed control system is proved by using Lyapunov theory. Real experiments of the human–robot interaction show the performance of the proposed controllers.</description><identifier>ISSN: 1861-2776</identifier><identifier>EISSN: 1861-2784</identifier><identifier>DOI: 10.1007/s11370-016-0207-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Control ; Controllers ; Cooperation ; Dynamic stability ; Dynamical Systems ; Engineering ; Human motion ; Mechanical impedance ; Mechatronics ; Motion control ; Older people ; Original Research Paper ; People with disabilities ; Robot control ; Robot dynamics ; Robotics ; Robotics and Automation ; Robots ; Sensors ; Stability analysis ; User Interfaces and Human Computer Interaction ; Velocity ; Vibration ; Visual impairment</subject><ispartof>Intelligent service robotics, 2017, Vol.10 (1), p.31-40</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ebf32ff50ee92ba03eba00c29d9b6ed5f5cf61a8e804178937720e1b727ddf733</citedby><cites>FETCH-LOGICAL-c316t-ebf32ff50ee92ba03eba00c29d9b6ed5f5cf61a8e804178937720e1b727ddf733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11370-016-0207-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918595029?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Leica, Paulo</creatorcontrib><creatorcontrib>Roberti, Flavio</creatorcontrib><creatorcontrib>Monllor, Matías</creatorcontrib><creatorcontrib>Toibero, Juan M.</creatorcontrib><creatorcontrib>Carelli, Ricardo</creatorcontrib><title>Control of bidirectional physical human–robot interaction based on the human intention</title><title>Intelligent service robotics</title><addtitle>Intel Serv Robotics</addtitle><description>This paper presents a control strategy for human–robot interaction with physical contact, recognizing the human intention to control the movement of a non-holonomic mobile robot. The human intention is modeled by mechanical impedance, sensing the human-desired force intensity and the human-desired force direction to guide the robot through unstructured environments. Robot dynamics is included to improve the interaction performance. Stability analysis of the proposed control system is proved by using Lyapunov theory. Real experiments of the human–robot interaction show the performance of the proposed controllers.</description><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Controllers</subject><subject>Cooperation</subject><subject>Dynamic stability</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Human motion</subject><subject>Mechanical impedance</subject><subject>Mechatronics</subject><subject>Motion control</subject><subject>Older people</subject><subject>Original Research Paper</subject><subject>People with disabilities</subject><subject>Robot control</subject><subject>Robot dynamics</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Robots</subject><subject>Sensors</subject><subject>Stability analysis</subject><subject>User Interfaces and Human Computer Interaction</subject><subject>Velocity</subject><subject>Vibration</subject><subject>Visual impairment</subject><issn>1861-2776</issn><issn>1861-2784</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1OwzAQhS0EEuXnAOwisTbM2EmcLFHFn1SJDUjsLCcZ01RtXGx30R134IacBLdBsGIz86T3vZHmMXaBcIUA6jogSgUcsOQgQPH8gE2wKpELVeWHv1qVx-wkhAVAibmQE_Y6dUP0bpk5mzV913tqY-8Gs8zW823o2yTmm5UZvj4-vWtczPohkjd7KGtMoC5LIs5pxPb2sDPP2JE1y0DnP_uUvdzdPk8f-Ozp_nF6M-OtxDJyaqwU1hZAVIvGgKQ0oBV1VzcldYUtWluiqaiCHFVVS6UEEDZKqK6zSspTdjneXXv3vqEQ9cJtfHogaFFjVdQFiDpROFKtdyF4snrt-5XxW42gdwXqsUCdCtS7AnWeMmLMhMQOb-T_Lv8f-gZ4U3Vs</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Leica, Paulo</creator><creator>Roberti, Flavio</creator><creator>Monllor, Matías</creator><creator>Toibero, Juan M.</creator><creator>Carelli, Ricardo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>2017</creationdate><title>Control of bidirectional physical human–robot interaction based on the human intention</title><author>Leica, Paulo ; Roberti, Flavio ; Monllor, Matías ; Toibero, Juan M. ; Carelli, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ebf32ff50ee92ba03eba00c29d9b6ed5f5cf61a8e804178937720e1b727ddf733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Controllers</topic><topic>Cooperation</topic><topic>Dynamic stability</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Human motion</topic><topic>Mechanical impedance</topic><topic>Mechatronics</topic><topic>Motion control</topic><topic>Older people</topic><topic>Original Research Paper</topic><topic>People with disabilities</topic><topic>Robot control</topic><topic>Robot dynamics</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Robots</topic><topic>Sensors</topic><topic>Stability analysis</topic><topic>User Interfaces and Human Computer Interaction</topic><topic>Velocity</topic><topic>Vibration</topic><topic>Visual impairment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leica, Paulo</creatorcontrib><creatorcontrib>Roberti, Flavio</creatorcontrib><creatorcontrib>Monllor, Matías</creatorcontrib><creatorcontrib>Toibero, Juan M.</creatorcontrib><creatorcontrib>Carelli, Ricardo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Intelligent service robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leica, Paulo</au><au>Roberti, Flavio</au><au>Monllor, Matías</au><au>Toibero, Juan M.</au><au>Carelli, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of bidirectional physical human–robot interaction based on the human intention</atitle><jtitle>Intelligent service robotics</jtitle><stitle>Intel Serv Robotics</stitle><date>2017</date><risdate>2017</risdate><volume>10</volume><issue>1</issue><spage>31</spage><epage>40</epage><pages>31-40</pages><issn>1861-2776</issn><eissn>1861-2784</eissn><abstract>This paper presents a control strategy for human–robot interaction with physical contact, recognizing the human intention to control the movement of a non-holonomic mobile robot. The human intention is modeled by mechanical impedance, sensing the human-desired force intensity and the human-desired force direction to guide the robot through unstructured environments. Robot dynamics is included to improve the interaction performance. Stability analysis of the proposed control system is proved by using Lyapunov theory. Real experiments of the human–robot interaction show the performance of the proposed controllers.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11370-016-0207-4</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-2776 |
ispartof | Intelligent service robotics, 2017, Vol.10 (1), p.31-40 |
issn | 1861-2776 1861-2784 |
language | eng |
recordid | cdi_proquest_journals_2918595029 |
source | SpringerLink; ProQuest Central |
subjects | Artificial Intelligence Control Controllers Cooperation Dynamic stability Dynamical Systems Engineering Human motion Mechanical impedance Mechatronics Motion control Older people Original Research Paper People with disabilities Robot control Robot dynamics Robotics Robotics and Automation Robots Sensors Stability analysis User Interfaces and Human Computer Interaction Velocity Vibration Visual impairment |
title | Control of bidirectional physical human–robot interaction based on the human intention |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20bidirectional%20physical%20human%E2%80%93robot%20interaction%20based%20on%20the%20human%20intention&rft.jtitle=Intelligent%20service%20robotics&rft.au=Leica,%20Paulo&rft.date=2017&rft.volume=10&rft.issue=1&rft.spage=31&rft.epage=40&rft.pages=31-40&rft.issn=1861-2776&rft.eissn=1861-2784&rft_id=info:doi/10.1007/s11370-016-0207-4&rft_dat=%3Cproquest_cross%3E2918595029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918595029&rft_id=info:pmid/&rfr_iscdi=true |