Krasnoselski-Mann type iterative method for hierarchical fixed point problem and split mixed equilibrium problem

In this paper, we suggest and analyze a Krasnoselski-Mann type iterative method to approximate a common element of solution sets of a hierarchical fixed point problem for nonexpansive mappings and a split mixed equilibrium problem. We prove that sequences generated by the proposed iterative method c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2018, Vol.77 (1), p.289-308
Hauptverfasser: Kazmi, K. R., Ali, Rehan, Furkan, Mohd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue 1
container_start_page 289
container_title Numerical algorithms
container_volume 77
creator Kazmi, K. R.
Ali, Rehan
Furkan, Mohd
description In this paper, we suggest and analyze a Krasnoselski-Mann type iterative method to approximate a common element of solution sets of a hierarchical fixed point problem for nonexpansive mappings and a split mixed equilibrium problem. We prove that sequences generated by the proposed iterative method converge weakly to a common element of solution sets of these problems. Further, we derive some consequences from our main result. Furthermore, we extend the considered iterative method to a split monotone variational inclusion problem and deduce some consequences. Finally, we give a numerical example to justify the main result. The method and results presented in this paper generalize and unify the corresponding known results in this area.
doi_str_mv 10.1007/s11075-017-0316-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918594371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918594371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e69583b11733aa2b9e3e0a33f9c7414e81ca9f4049e993e9c80a4bf474cfed1b3</originalsourceid><addsrcrecordid>eNp1UMlOwzAQtRBIlMIHcLPEOeCJkzo-oopNFHGBs-UkY-qSrbaDyN_jUhAnTjOat40eIefALoExceUBmMgTBiJhHBbJdEBmkIs0kekiP4z7DgEui2Ny4v2GsahKxYwMj077rvfY-HebPOmuo2EakNqATgf7gbTFsO5ranpH1zYeXbW2lW6osZ9Y06G3XaCD68sGW6q7mvqhsYG23yhuR9vY0tmx_eWckiOjG49nP3NOXm9vXpb3yer57mF5vUqq-H5IcCHzgpcAgnOt01IiR6Y5N7ISGWRYQKWlyVgmUUqOsiqYzkqTiawyWEPJ5-Ri7xtztyP6oDb96LoYqVIJRS4zLiCyYM-qXO-9Q6MGZ1vtJgVM7YpV-2JVrE_tilVT1KR7jY_c7g3dn_P_oi8QfH4q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918594371</pqid></control><display><type>article</type><title>Krasnoselski-Mann type iterative method for hierarchical fixed point problem and split mixed equilibrium problem</title><source>SpringerNature Journals</source><creator>Kazmi, K. R. ; Ali, Rehan ; Furkan, Mohd</creator><creatorcontrib>Kazmi, K. R. ; Ali, Rehan ; Furkan, Mohd</creatorcontrib><description>In this paper, we suggest and analyze a Krasnoselski-Mann type iterative method to approximate a common element of solution sets of a hierarchical fixed point problem for nonexpansive mappings and a split mixed equilibrium problem. We prove that sequences generated by the proposed iterative method converge weakly to a common element of solution sets of these problems. Further, we derive some consequences from our main result. Furthermore, we extend the considered iterative method to a split monotone variational inclusion problem and deduce some consequences. Finally, we give a numerical example to justify the main result. The method and results presented in this paper generalize and unify the corresponding known results in this area.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-017-0316-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Science ; Equilibrium ; Iterative methods ; Mathematical programming ; Numeric Computing ; Numerical Analysis ; Original Paper ; Theory of Computation</subject><ispartof>Numerical algorithms, 2018, Vol.77 (1), p.289-308</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Springer Science+Business Media New York 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e69583b11733aa2b9e3e0a33f9c7414e81ca9f4049e993e9c80a4bf474cfed1b3</citedby><cites>FETCH-LOGICAL-c316t-e69583b11733aa2b9e3e0a33f9c7414e81ca9f4049e993e9c80a4bf474cfed1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-017-0316-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-017-0316-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kazmi, K. R.</creatorcontrib><creatorcontrib>Ali, Rehan</creatorcontrib><creatorcontrib>Furkan, Mohd</creatorcontrib><title>Krasnoselski-Mann type iterative method for hierarchical fixed point problem and split mixed equilibrium problem</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>In this paper, we suggest and analyze a Krasnoselski-Mann type iterative method to approximate a common element of solution sets of a hierarchical fixed point problem for nonexpansive mappings and a split mixed equilibrium problem. We prove that sequences generated by the proposed iterative method converge weakly to a common element of solution sets of these problems. Further, we derive some consequences from our main result. Furthermore, we extend the considered iterative method to a split monotone variational inclusion problem and deduce some consequences. Finally, we give a numerical example to justify the main result. The method and results presented in this paper generalize and unify the corresponding known results in this area.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Equilibrium</subject><subject>Iterative methods</subject><subject>Mathematical programming</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMlOwzAQtRBIlMIHcLPEOeCJkzo-oopNFHGBs-UkY-qSrbaDyN_jUhAnTjOat40eIefALoExceUBmMgTBiJhHBbJdEBmkIs0kekiP4z7DgEui2Ny4v2GsahKxYwMj077rvfY-HebPOmuo2EakNqATgf7gbTFsO5ranpH1zYeXbW2lW6osZ9Y06G3XaCD68sGW6q7mvqhsYG23yhuR9vY0tmx_eWckiOjG49nP3NOXm9vXpb3yer57mF5vUqq-H5IcCHzgpcAgnOt01IiR6Y5N7ISGWRYQKWlyVgmUUqOsiqYzkqTiawyWEPJ5-Ri7xtztyP6oDb96LoYqVIJRS4zLiCyYM-qXO-9Q6MGZ1vtJgVM7YpV-2JVrE_tilVT1KR7jY_c7g3dn_P_oi8QfH4q</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Kazmi, K. R.</creator><creator>Ali, Rehan</creator><creator>Furkan, Mohd</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>2018</creationdate><title>Krasnoselski-Mann type iterative method for hierarchical fixed point problem and split mixed equilibrium problem</title><author>Kazmi, K. R. ; Ali, Rehan ; Furkan, Mohd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e69583b11733aa2b9e3e0a33f9c7414e81ca9f4049e993e9c80a4bf474cfed1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Equilibrium</topic><topic>Iterative methods</topic><topic>Mathematical programming</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazmi, K. R.</creatorcontrib><creatorcontrib>Ali, Rehan</creatorcontrib><creatorcontrib>Furkan, Mohd</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazmi, K. R.</au><au>Ali, Rehan</au><au>Furkan, Mohd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Krasnoselski-Mann type iterative method for hierarchical fixed point problem and split mixed equilibrium problem</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2018</date><risdate>2018</risdate><volume>77</volume><issue>1</issue><spage>289</spage><epage>308</epage><pages>289-308</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>In this paper, we suggest and analyze a Krasnoselski-Mann type iterative method to approximate a common element of solution sets of a hierarchical fixed point problem for nonexpansive mappings and a split mixed equilibrium problem. We prove that sequences generated by the proposed iterative method converge weakly to a common element of solution sets of these problems. Further, we derive some consequences from our main result. Furthermore, we extend the considered iterative method to a split monotone variational inclusion problem and deduce some consequences. Finally, we give a numerical example to justify the main result. The method and results presented in this paper generalize and unify the corresponding known results in this area.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-017-0316-y</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2018, Vol.77 (1), p.289-308
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918594371
source SpringerNature Journals
subjects Algebra
Algorithms
Computer Science
Equilibrium
Iterative methods
Mathematical programming
Numeric Computing
Numerical Analysis
Original Paper
Theory of Computation
title Krasnoselski-Mann type iterative method for hierarchical fixed point problem and split mixed equilibrium problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Krasnoselski-Mann%20type%20iterative%20method%20for%20hierarchical%20fixed%20point%20problem%20and%20split%20mixed%20equilibrium%20problem&rft.jtitle=Numerical%20algorithms&rft.au=Kazmi,%20K.%20R.&rft.date=2018&rft.volume=77&rft.issue=1&rft.spage=289&rft.epage=308&rft.pages=289-308&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-017-0316-y&rft_dat=%3Cproquest_cross%3E2918594371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918594371&rft_id=info:pmid/&rfr_iscdi=true