Numerical methods for solving some matrix feasibility problems
In this paper, we design two numerical methods for solving some matrix feasibility problems, which arise in the quantum information science. By making use of the structured properties of linear constraints and the minimization theorem of symmetric matrix on manifold, the projection formulas of a mat...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2017-02, Vol.74 (2), p.461-479 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 479 |
---|---|
container_issue | 2 |
container_start_page | 461 |
container_title | Numerical algorithms |
container_volume | 74 |
creator | Duan, Xue-Feng Li, Chun-Mei Li, Jiao-Fen Ding, Yong |
description | In this paper, we design two numerical methods for solving some matrix feasibility problems, which arise in the quantum information science. By making use of the structured properties of linear constraints and the minimization theorem of symmetric matrix on manifold, the projection formulas of a matrix onto the feasible sets are given, and then the relaxed alternating projection algorithm and alternating projection algorithm on manifolds are designed to solve these problems. Numerical examples show that the new methods are feasible and effective. |
doi_str_mv | 10.1007/s11075-016-0155-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918594360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918594360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-8ae195c5c7b4472b84c9fa0cd7f41137936112e7c20d717e229ec7f547c319843</originalsourceid><addsrcrecordid>eNp1kE9LxDAUxIMouK5-AG8Fz9G8NOlrLoIs_oNFL3oOaTZZs7TbNWnF_fZmqeDJw2PeYX4zMIRcArsGxvAmATCUlEGVT0rKj8gMJHKqeCWP888AKZSqPiVnKW0YyxTHGbl9GTsXgzVt0bnho1-lwvexSH37FbbrrJ0rOjPE8F14Z1JoQhuGfbGLfdO6Lp2TE2_a5C5-dU7eH-7fFk90-fr4vLhbUsureqC1caCklRYbIZA3tbDKG2ZX6AVAiaqsALhDy9kKAR3nyln0UqAtQdWinJOrKTcXf44uDXrTj3GbKzVXUEslyoplF0wuG_uUovN6F0Nn4l4D04eZ9DSTzjPpw0yaZ4ZPTMre7drFv-T_oR_g22l6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918594360</pqid></control><display><type>article</type><title>Numerical methods for solving some matrix feasibility problems</title><source>Springer Nature - Complete Springer Journals</source><creator>Duan, Xue-Feng ; Li, Chun-Mei ; Li, Jiao-Fen ; Ding, Yong</creator><creatorcontrib>Duan, Xue-Feng ; Li, Chun-Mei ; Li, Jiao-Fen ; Ding, Yong</creatorcontrib><description>In this paper, we design two numerical methods for solving some matrix feasibility problems, which arise in the quantum information science. By making use of the structured properties of linear constraints and the minimization theorem of symmetric matrix on manifold, the projection formulas of a matrix onto the feasible sets are given, and then the relaxed alternating projection algorithm and alternating projection algorithm on manifolds are designed to solve these problems. Numerical examples show that the new methods are feasible and effective.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-016-0155-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Science ; Eigenvalues ; Feasibility ; Information science ; Manifolds ; Mathematical analysis ; Matrices (mathematics) ; Numeric Computing ; Numerical Analysis ; Numerical methods ; Original Paper ; Quantum phenomena ; Science ; Theory of Computation</subject><ispartof>Numerical algorithms, 2017-02, Vol.74 (2), p.461-479</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Springer Science+Business Media New York 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-8ae195c5c7b4472b84c9fa0cd7f41137936112e7c20d717e229ec7f547c319843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-016-0155-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-016-0155-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Duan, Xue-Feng</creatorcontrib><creatorcontrib>Li, Chun-Mei</creatorcontrib><creatorcontrib>Li, Jiao-Fen</creatorcontrib><creatorcontrib>Ding, Yong</creatorcontrib><title>Numerical methods for solving some matrix feasibility problems</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>In this paper, we design two numerical methods for solving some matrix feasibility problems, which arise in the quantum information science. By making use of the structured properties of linear constraints and the minimization theorem of symmetric matrix on manifold, the projection formulas of a matrix onto the feasible sets are given, and then the relaxed alternating projection algorithm and alternating projection algorithm on manifolds are designed to solve these problems. Numerical examples show that the new methods are feasible and effective.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Eigenvalues</subject><subject>Feasibility</subject><subject>Information science</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Numerical methods</subject><subject>Original Paper</subject><subject>Quantum phenomena</subject><subject>Science</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LxDAUxIMouK5-AG8Fz9G8NOlrLoIs_oNFL3oOaTZZs7TbNWnF_fZmqeDJw2PeYX4zMIRcArsGxvAmATCUlEGVT0rKj8gMJHKqeCWP888AKZSqPiVnKW0YyxTHGbl9GTsXgzVt0bnho1-lwvexSH37FbbrrJ0rOjPE8F14Z1JoQhuGfbGLfdO6Lp2TE2_a5C5-dU7eH-7fFk90-fr4vLhbUsureqC1caCklRYbIZA3tbDKG2ZX6AVAiaqsALhDy9kKAR3nyln0UqAtQdWinJOrKTcXf44uDXrTj3GbKzVXUEslyoplF0wuG_uUovN6F0Nn4l4D04eZ9DSTzjPpw0yaZ4ZPTMre7drFv-T_oR_g22l6</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Duan, Xue-Feng</creator><creator>Li, Chun-Mei</creator><creator>Li, Jiao-Fen</creator><creator>Ding, Yong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20170201</creationdate><title>Numerical methods for solving some matrix feasibility problems</title><author>Duan, Xue-Feng ; Li, Chun-Mei ; Li, Jiao-Fen ; Ding, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-8ae195c5c7b4472b84c9fa0cd7f41137936112e7c20d717e229ec7f547c319843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Eigenvalues</topic><topic>Feasibility</topic><topic>Information science</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Numerical methods</topic><topic>Original Paper</topic><topic>Quantum phenomena</topic><topic>Science</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Xue-Feng</creatorcontrib><creatorcontrib>Li, Chun-Mei</creatorcontrib><creatorcontrib>Li, Jiao-Fen</creatorcontrib><creatorcontrib>Ding, Yong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Xue-Feng</au><au>Li, Chun-Mei</au><au>Li, Jiao-Fen</au><au>Ding, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical methods for solving some matrix feasibility problems</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>74</volume><issue>2</issue><spage>461</spage><epage>479</epage><pages>461-479</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>In this paper, we design two numerical methods for solving some matrix feasibility problems, which arise in the quantum information science. By making use of the structured properties of linear constraints and the minimization theorem of symmetric matrix on manifold, the projection formulas of a matrix onto the feasible sets are given, and then the relaxed alternating projection algorithm and alternating projection algorithm on manifolds are designed to solve these problems. Numerical examples show that the new methods are feasible and effective.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-016-0155-2</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2017-02, Vol.74 (2), p.461-479 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_journals_2918594360 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Algorithms Computer Science Eigenvalues Feasibility Information science Manifolds Mathematical analysis Matrices (mathematics) Numeric Computing Numerical Analysis Numerical methods Original Paper Quantum phenomena Science Theory of Computation |
title | Numerical methods for solving some matrix feasibility problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20methods%20for%20solving%20some%20matrix%20feasibility%20problems&rft.jtitle=Numerical%20algorithms&rft.au=Duan,%20Xue-Feng&rft.date=2017-02-01&rft.volume=74&rft.issue=2&rft.spage=461&rft.epage=479&rft.pages=461-479&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-016-0155-2&rft_dat=%3Cproquest_cross%3E2918594360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918594360&rft_id=info:pmid/&rfr_iscdi=true |