Numerical methods for solving some matrix feasibility problems

In this paper, we design two numerical methods for solving some matrix feasibility problems, which arise in the quantum information science. By making use of the structured properties of linear constraints and the minimization theorem of symmetric matrix on manifold, the projection formulas of a mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2017-02, Vol.74 (2), p.461-479
Hauptverfasser: Duan, Xue-Feng, Li, Chun-Mei, Li, Jiao-Fen, Ding, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue 2
container_start_page 461
container_title Numerical algorithms
container_volume 74
creator Duan, Xue-Feng
Li, Chun-Mei
Li, Jiao-Fen
Ding, Yong
description In this paper, we design two numerical methods for solving some matrix feasibility problems, which arise in the quantum information science. By making use of the structured properties of linear constraints and the minimization theorem of symmetric matrix on manifold, the projection formulas of a matrix onto the feasible sets are given, and then the relaxed alternating projection algorithm and alternating projection algorithm on manifolds are designed to solve these problems. Numerical examples show that the new methods are feasible and effective.
doi_str_mv 10.1007/s11075-016-0155-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918594360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918594360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-8ae195c5c7b4472b84c9fa0cd7f41137936112e7c20d717e229ec7f547c319843</originalsourceid><addsrcrecordid>eNp1kE9LxDAUxIMouK5-AG8Fz9G8NOlrLoIs_oNFL3oOaTZZs7TbNWnF_fZmqeDJw2PeYX4zMIRcArsGxvAmATCUlEGVT0rKj8gMJHKqeCWP888AKZSqPiVnKW0YyxTHGbl9GTsXgzVt0bnho1-lwvexSH37FbbrrJ0rOjPE8F14Z1JoQhuGfbGLfdO6Lp2TE2_a5C5-dU7eH-7fFk90-fr4vLhbUsureqC1caCklRYbIZA3tbDKG2ZX6AVAiaqsALhDy9kKAR3nyln0UqAtQdWinJOrKTcXf44uDXrTj3GbKzVXUEslyoplF0wuG_uUovN6F0Nn4l4D04eZ9DSTzjPpw0yaZ4ZPTMre7drFv-T_oR_g22l6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918594360</pqid></control><display><type>article</type><title>Numerical methods for solving some matrix feasibility problems</title><source>Springer Nature - Complete Springer Journals</source><creator>Duan, Xue-Feng ; Li, Chun-Mei ; Li, Jiao-Fen ; Ding, Yong</creator><creatorcontrib>Duan, Xue-Feng ; Li, Chun-Mei ; Li, Jiao-Fen ; Ding, Yong</creatorcontrib><description>In this paper, we design two numerical methods for solving some matrix feasibility problems, which arise in the quantum information science. By making use of the structured properties of linear constraints and the minimization theorem of symmetric matrix on manifold, the projection formulas of a matrix onto the feasible sets are given, and then the relaxed alternating projection algorithm and alternating projection algorithm on manifolds are designed to solve these problems. Numerical examples show that the new methods are feasible and effective.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-016-0155-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Science ; Eigenvalues ; Feasibility ; Information science ; Manifolds ; Mathematical analysis ; Matrices (mathematics) ; Numeric Computing ; Numerical Analysis ; Numerical methods ; Original Paper ; Quantum phenomena ; Science ; Theory of Computation</subject><ispartof>Numerical algorithms, 2017-02, Vol.74 (2), p.461-479</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Springer Science+Business Media New York 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-8ae195c5c7b4472b84c9fa0cd7f41137936112e7c20d717e229ec7f547c319843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-016-0155-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-016-0155-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Duan, Xue-Feng</creatorcontrib><creatorcontrib>Li, Chun-Mei</creatorcontrib><creatorcontrib>Li, Jiao-Fen</creatorcontrib><creatorcontrib>Ding, Yong</creatorcontrib><title>Numerical methods for solving some matrix feasibility problems</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>In this paper, we design two numerical methods for solving some matrix feasibility problems, which arise in the quantum information science. By making use of the structured properties of linear constraints and the minimization theorem of symmetric matrix on manifold, the projection formulas of a matrix onto the feasible sets are given, and then the relaxed alternating projection algorithm and alternating projection algorithm on manifolds are designed to solve these problems. Numerical examples show that the new methods are feasible and effective.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Eigenvalues</subject><subject>Feasibility</subject><subject>Information science</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Numerical methods</subject><subject>Original Paper</subject><subject>Quantum phenomena</subject><subject>Science</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LxDAUxIMouK5-AG8Fz9G8NOlrLoIs_oNFL3oOaTZZs7TbNWnF_fZmqeDJw2PeYX4zMIRcArsGxvAmATCUlEGVT0rKj8gMJHKqeCWP888AKZSqPiVnKW0YyxTHGbl9GTsXgzVt0bnho1-lwvexSH37FbbrrJ0rOjPE8F14Z1JoQhuGfbGLfdO6Lp2TE2_a5C5-dU7eH-7fFk90-fr4vLhbUsureqC1caCklRYbIZA3tbDKG2ZX6AVAiaqsALhDy9kKAR3nyln0UqAtQdWinJOrKTcXf44uDXrTj3GbKzVXUEslyoplF0wuG_uUovN6F0Nn4l4D04eZ9DSTzjPpw0yaZ4ZPTMre7drFv-T_oR_g22l6</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Duan, Xue-Feng</creator><creator>Li, Chun-Mei</creator><creator>Li, Jiao-Fen</creator><creator>Ding, Yong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20170201</creationdate><title>Numerical methods for solving some matrix feasibility problems</title><author>Duan, Xue-Feng ; Li, Chun-Mei ; Li, Jiao-Fen ; Ding, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-8ae195c5c7b4472b84c9fa0cd7f41137936112e7c20d717e229ec7f547c319843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Eigenvalues</topic><topic>Feasibility</topic><topic>Information science</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Numerical methods</topic><topic>Original Paper</topic><topic>Quantum phenomena</topic><topic>Science</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Xue-Feng</creatorcontrib><creatorcontrib>Li, Chun-Mei</creatorcontrib><creatorcontrib>Li, Jiao-Fen</creatorcontrib><creatorcontrib>Ding, Yong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Xue-Feng</au><au>Li, Chun-Mei</au><au>Li, Jiao-Fen</au><au>Ding, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical methods for solving some matrix feasibility problems</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>74</volume><issue>2</issue><spage>461</spage><epage>479</epage><pages>461-479</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>In this paper, we design two numerical methods for solving some matrix feasibility problems, which arise in the quantum information science. By making use of the structured properties of linear constraints and the minimization theorem of symmetric matrix on manifold, the projection formulas of a matrix onto the feasible sets are given, and then the relaxed alternating projection algorithm and alternating projection algorithm on manifolds are designed to solve these problems. Numerical examples show that the new methods are feasible and effective.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-016-0155-2</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2017-02, Vol.74 (2), p.461-479
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918594360
source Springer Nature - Complete Springer Journals
subjects Algebra
Algorithms
Computer Science
Eigenvalues
Feasibility
Information science
Manifolds
Mathematical analysis
Matrices (mathematics)
Numeric Computing
Numerical Analysis
Numerical methods
Original Paper
Quantum phenomena
Science
Theory of Computation
title Numerical methods for solving some matrix feasibility problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20methods%20for%20solving%20some%20matrix%20feasibility%20problems&rft.jtitle=Numerical%20algorithms&rft.au=Duan,%20Xue-Feng&rft.date=2017-02-01&rft.volume=74&rft.issue=2&rft.spage=461&rft.epage=479&rft.pages=461-479&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-016-0155-2&rft_dat=%3Cproquest_cross%3E2918594360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918594360&rft_id=info:pmid/&rfr_iscdi=true