Polynomial approximation of rational Bézier curves with constraints
We present an efficient method to solve the problem of the constrained least squares approximation of the rational Bézier curve by the polynomial Bézier curve. The presented algorithm uses the dual constrained Bernstein basis polynomials, and exploits their recursive properties. Examples are given,...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2012-04, Vol.59 (4), p.607-622 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 622 |
---|---|
container_issue | 4 |
container_start_page | 607 |
container_title | Numerical algorithms |
container_volume | 59 |
creator | Lewanowicz, Stanisław Woźny, Paweł Keller, Paweł |
description | We present an efficient method to solve the problem of the constrained least squares approximation of the rational Bézier curve by the polynomial Bézier curve. The presented algorithm uses the dual constrained Bernstein basis polynomials, and exploits their recursive properties. Examples are given, showing the effectiveness of the algorithm. |
doi_str_mv | 10.1007/s11075-011-9507-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918594076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918594076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ddca27f304c360b01bb54258fdf041d8189888d16c0bd2ee7fb95fccb4ed898f3</originalsourceid><addsrcrecordid>eNp1UEtOwzAUtBBIlMIB2EVibXjPiWNnCRU_qRIsYG0l_kCqNi52CpTTsOUacDFcgsSK1RtpPpo3hBwiHCOAOImIIDgFRFpxEBS2yAi5YLRiJd9OGFBQzCu5S_ZinAEkFxMjcn7r5-vOL9p6ntXLZfCv7aLuW99l3mXhByXm7OvjrbUh06vwbGP20vaPn-_ad7EPddv1cZ_suHoe7cHvHZP7i_O7yRWd3lxeT06nVOdY9tQYXTPhcih0XkID2DS8YFw646BAI1FWUkqDpYbGMGuFayrutG4KaxLl8jE5GnJT0aeVjb2a-VVIDaNiFUpeFSDKpMJBpYOPMVinliF9FdYKQW3WUsNaKq2lNmspSB42eGLSdg82_CX_b_oGVoFveA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918594076</pqid></control><display><type>article</type><title>Polynomial approximation of rational Bézier curves with constraints</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lewanowicz, Stanisław ; Woźny, Paweł ; Keller, Paweł</creator><creatorcontrib>Lewanowicz, Stanisław ; Woźny, Paweł ; Keller, Paweł</creatorcontrib><description>We present an efficient method to solve the problem of the constrained least squares approximation of the rational Bézier curve by the polynomial Bézier curve. The presented algorithm uses the dual constrained Bernstein basis polynomials, and exploits their recursive properties. Examples are given, showing the effectiveness of the algorithm.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-011-9507-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Algorithms ; Approximation ; Computer Science ; Constraints ; Curves ; Mathematical analysis ; Numeric Computing ; Numerical Analysis ; Original Paper ; Polynomials ; Theory of Computation</subject><ispartof>Numerical algorithms, 2012-04, Vol.59 (4), p.607-622</ispartof><rights>Springer Science+Business Media, LLC. 2011</rights><rights>Springer Science+Business Media, LLC. 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ddca27f304c360b01bb54258fdf041d8189888d16c0bd2ee7fb95fccb4ed898f3</citedby><cites>FETCH-LOGICAL-c316t-ddca27f304c360b01bb54258fdf041d8189888d16c0bd2ee7fb95fccb4ed898f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-011-9507-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-011-9507-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Lewanowicz, Stanisław</creatorcontrib><creatorcontrib>Woźny, Paweł</creatorcontrib><creatorcontrib>Keller, Paweł</creatorcontrib><title>Polynomial approximation of rational Bézier curves with constraints</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>We present an efficient method to solve the problem of the constrained least squares approximation of the rational Bézier curve by the polynomial Bézier curve. The presented algorithm uses the dual constrained Bernstein basis polynomials, and exploits their recursive properties. Examples are given, showing the effectiveness of the algorithm.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer Science</subject><subject>Constraints</subject><subject>Curves</subject><subject>Mathematical analysis</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UEtOwzAUtBBIlMIB2EVibXjPiWNnCRU_qRIsYG0l_kCqNi52CpTTsOUacDFcgsSK1RtpPpo3hBwiHCOAOImIIDgFRFpxEBS2yAi5YLRiJd9OGFBQzCu5S_ZinAEkFxMjcn7r5-vOL9p6ntXLZfCv7aLuW99l3mXhByXm7OvjrbUh06vwbGP20vaPn-_ad7EPddv1cZ_suHoe7cHvHZP7i_O7yRWd3lxeT06nVOdY9tQYXTPhcih0XkID2DS8YFw646BAI1FWUkqDpYbGMGuFayrutG4KaxLl8jE5GnJT0aeVjb2a-VVIDaNiFUpeFSDKpMJBpYOPMVinliF9FdYKQW3WUsNaKq2lNmspSB42eGLSdg82_CX_b_oGVoFveA</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Lewanowicz, Stanisław</creator><creator>Woźny, Paweł</creator><creator>Keller, Paweł</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20120401</creationdate><title>Polynomial approximation of rational Bézier curves with constraints</title><author>Lewanowicz, Stanisław ; Woźny, Paweł ; Keller, Paweł</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ddca27f304c360b01bb54258fdf041d8189888d16c0bd2ee7fb95fccb4ed898f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer Science</topic><topic>Constraints</topic><topic>Curves</topic><topic>Mathematical analysis</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewanowicz, Stanisław</creatorcontrib><creatorcontrib>Woźny, Paweł</creatorcontrib><creatorcontrib>Keller, Paweł</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewanowicz, Stanisław</au><au>Woźny, Paweł</au><au>Keller, Paweł</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynomial approximation of rational Bézier curves with constraints</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>59</volume><issue>4</issue><spage>607</spage><epage>622</epage><pages>607-622</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>We present an efficient method to solve the problem of the constrained least squares approximation of the rational Bézier curve by the polynomial Bézier curve. The presented algorithm uses the dual constrained Bernstein basis polynomials, and exploits their recursive properties. Examples are given, showing the effectiveness of the algorithm.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11075-011-9507-0</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2012-04, Vol.59 (4), p.607-622 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_journals_2918594076 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Algorithms Approximation Computer Science Constraints Curves Mathematical analysis Numeric Computing Numerical Analysis Original Paper Polynomials Theory of Computation |
title | Polynomial approximation of rational Bézier curves with constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynomial%20approximation%20of%20rational%20B%C3%A9zier%20curves%20with%C2%A0constraints&rft.jtitle=Numerical%20algorithms&rft.au=Lewanowicz,%20Stanis%C5%82aw&rft.date=2012-04-01&rft.volume=59&rft.issue=4&rft.spage=607&rft.epage=622&rft.pages=607-622&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-011-9507-0&rft_dat=%3Cproquest_cross%3E2918594076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918594076&rft_id=info:pmid/&rfr_iscdi=true |