Polynomial approximation of rational Bézier curves with constraints

We present an efficient method to solve the problem of the constrained least squares approximation of the rational Bézier curve by the polynomial Bézier curve. The presented algorithm uses the dual constrained Bernstein basis polynomials, and exploits their recursive properties. Examples are given,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2012-04, Vol.59 (4), p.607-622
Hauptverfasser: Lewanowicz, Stanisław, Woźny, Paweł, Keller, Paweł
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 622
container_issue 4
container_start_page 607
container_title Numerical algorithms
container_volume 59
creator Lewanowicz, Stanisław
Woźny, Paweł
Keller, Paweł
description We present an efficient method to solve the problem of the constrained least squares approximation of the rational Bézier curve by the polynomial Bézier curve. The presented algorithm uses the dual constrained Bernstein basis polynomials, and exploits their recursive properties. Examples are given, showing the effectiveness of the algorithm.
doi_str_mv 10.1007/s11075-011-9507-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918594076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918594076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ddca27f304c360b01bb54258fdf041d8189888d16c0bd2ee7fb95fccb4ed898f3</originalsourceid><addsrcrecordid>eNp1UEtOwzAUtBBIlMIB2EVibXjPiWNnCRU_qRIsYG0l_kCqNi52CpTTsOUacDFcgsSK1RtpPpo3hBwiHCOAOImIIDgFRFpxEBS2yAi5YLRiJd9OGFBQzCu5S_ZinAEkFxMjcn7r5-vOL9p6ntXLZfCv7aLuW99l3mXhByXm7OvjrbUh06vwbGP20vaPn-_ad7EPddv1cZ_suHoe7cHvHZP7i_O7yRWd3lxeT06nVOdY9tQYXTPhcih0XkID2DS8YFw646BAI1FWUkqDpYbGMGuFayrutG4KaxLl8jE5GnJT0aeVjb2a-VVIDaNiFUpeFSDKpMJBpYOPMVinliF9FdYKQW3WUsNaKq2lNmspSB42eGLSdg82_CX_b_oGVoFveA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918594076</pqid></control><display><type>article</type><title>Polynomial approximation of rational Bézier curves with constraints</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lewanowicz, Stanisław ; Woźny, Paweł ; Keller, Paweł</creator><creatorcontrib>Lewanowicz, Stanisław ; Woźny, Paweł ; Keller, Paweł</creatorcontrib><description>We present an efficient method to solve the problem of the constrained least squares approximation of the rational Bézier curve by the polynomial Bézier curve. The presented algorithm uses the dual constrained Bernstein basis polynomials, and exploits their recursive properties. Examples are given, showing the effectiveness of the algorithm.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-011-9507-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Algorithms ; Approximation ; Computer Science ; Constraints ; Curves ; Mathematical analysis ; Numeric Computing ; Numerical Analysis ; Original Paper ; Polynomials ; Theory of Computation</subject><ispartof>Numerical algorithms, 2012-04, Vol.59 (4), p.607-622</ispartof><rights>Springer Science+Business Media, LLC. 2011</rights><rights>Springer Science+Business Media, LLC. 2011.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ddca27f304c360b01bb54258fdf041d8189888d16c0bd2ee7fb95fccb4ed898f3</citedby><cites>FETCH-LOGICAL-c316t-ddca27f304c360b01bb54258fdf041d8189888d16c0bd2ee7fb95fccb4ed898f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-011-9507-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-011-9507-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Lewanowicz, Stanisław</creatorcontrib><creatorcontrib>Woźny, Paweł</creatorcontrib><creatorcontrib>Keller, Paweł</creatorcontrib><title>Polynomial approximation of rational Bézier curves with constraints</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>We present an efficient method to solve the problem of the constrained least squares approximation of the rational Bézier curve by the polynomial Bézier curve. The presented algorithm uses the dual constrained Bernstein basis polynomials, and exploits their recursive properties. Examples are given, showing the effectiveness of the algorithm.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer Science</subject><subject>Constraints</subject><subject>Curves</subject><subject>Mathematical analysis</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UEtOwzAUtBBIlMIB2EVibXjPiWNnCRU_qRIsYG0l_kCqNi52CpTTsOUacDFcgsSK1RtpPpo3hBwiHCOAOImIIDgFRFpxEBS2yAi5YLRiJd9OGFBQzCu5S_ZinAEkFxMjcn7r5-vOL9p6ntXLZfCv7aLuW99l3mXhByXm7OvjrbUh06vwbGP20vaPn-_ad7EPddv1cZ_suHoe7cHvHZP7i_O7yRWd3lxeT06nVOdY9tQYXTPhcih0XkID2DS8YFw646BAI1FWUkqDpYbGMGuFayrutG4KaxLl8jE5GnJT0aeVjb2a-VVIDaNiFUpeFSDKpMJBpYOPMVinliF9FdYKQW3WUsNaKq2lNmspSB42eGLSdg82_CX_b_oGVoFveA</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Lewanowicz, Stanisław</creator><creator>Woźny, Paweł</creator><creator>Keller, Paweł</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20120401</creationdate><title>Polynomial approximation of rational Bézier curves with constraints</title><author>Lewanowicz, Stanisław ; Woźny, Paweł ; Keller, Paweł</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ddca27f304c360b01bb54258fdf041d8189888d16c0bd2ee7fb95fccb4ed898f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer Science</topic><topic>Constraints</topic><topic>Curves</topic><topic>Mathematical analysis</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewanowicz, Stanisław</creatorcontrib><creatorcontrib>Woźny, Paweł</creatorcontrib><creatorcontrib>Keller, Paweł</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewanowicz, Stanisław</au><au>Woźny, Paweł</au><au>Keller, Paweł</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynomial approximation of rational Bézier curves with constraints</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>59</volume><issue>4</issue><spage>607</spage><epage>622</epage><pages>607-622</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>We present an efficient method to solve the problem of the constrained least squares approximation of the rational Bézier curve by the polynomial Bézier curve. The presented algorithm uses the dual constrained Bernstein basis polynomials, and exploits their recursive properties. Examples are given, showing the effectiveness of the algorithm.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11075-011-9507-0</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2012-04, Vol.59 (4), p.607-622
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918594076
source SpringerLink Journals - AutoHoldings
subjects Algebra
Algorithms
Approximation
Computer Science
Constraints
Curves
Mathematical analysis
Numeric Computing
Numerical Analysis
Original Paper
Polynomials
Theory of Computation
title Polynomial approximation of rational Bézier curves with constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynomial%20approximation%20of%20rational%20B%C3%A9zier%20curves%20with%C2%A0constraints&rft.jtitle=Numerical%20algorithms&rft.au=Lewanowicz,%20Stanis%C5%82aw&rft.date=2012-04-01&rft.volume=59&rft.issue=4&rft.spage=607&rft.epage=622&rft.pages=607-622&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-011-9507-0&rft_dat=%3Cproquest_cross%3E2918594076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918594076&rft_id=info:pmid/&rfr_iscdi=true