The spatiotemporal scale effect on vegetation interannual trend estimates based on satellite products over Qinghai-Tibet Plateau
The trend estimate of vegetation change is essential to understand the change rule of the ecosystem. Previous studies were mainly focused on quantifying trends or analyzing their spatial distribution characteristics. Nevertheless, the uncertainties of trend estimates caused by spatiotemporal scale e...
Gespeichert in:
Veröffentlicht in: | Journal of geographical sciences 2023-05, Vol.33 (5), p.924-944 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 944 |
---|---|
container_issue | 5 |
container_start_page | 924 |
container_title | Journal of geographical sciences |
container_volume | 33 |
creator | Ma, Dujuan Wu, Xiaodan Wang, Jingping Mu, Cuicui |
description | The trend estimate of vegetation change is essential to understand the change rule of the ecosystem. Previous studies were mainly focused on quantifying trends or analyzing their spatial distribution characteristics. Nevertheless, the uncertainties of trend estimates caused by spatiotemporal scale effects have rarely been studied. In response to this challenge, this study aims to investigate spatiotemporal scale effects on trend estimates using Moderate-Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and Gross Primary Productivity (GPP) products from 2001 to 2019 in the Qinghai-Tibet Plateau (QTP). Moreover, the possible influencing factors on spatiotemporal scale effect, including spatial heterogeneity, topography, and vegetation types, were explored. The results indicate that the spatial scale effect depends more on the dataset with a coarser spatial resolution, and temporal scale effects depend on the time span of datasets. Unexpectedly, the trend estimates on the 8-day and yearly scale are much closer than that on the monthly scale. In addition, in areas with low spatial heterogeneity, low topography variability, and sparse vegetation, the spatiotemporal scale effect can be ignored, and vice versa. The results in this study help deepen the consciousness and understanding of spatiotemporal scale effects on trend detection. |
doi_str_mv | 10.1007/s11442-023-2113-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918593580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749384259</galeid><sourcerecordid>A749384259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-d9309c96f2af20dccd48c118720f0b8989bc7a7674b8208da5c0939e4353df8f3</originalsourceid><addsrcrecordid>eNp1kU1rXCEUhqWk0GTaH9Cd0LWpH_dDlyHkCwJJYQrdiVePE8Mdnag3MLv-9DrcQlfFxdHD8x5fzovQV0YvGaXj98JY13FCuSCcMUGOH9A5kwMjqh_kWbtTqsggxl-f0EUpr5QK1Q38HP3evgAuB1NDqrA_pGxmXKyZAYP3YCtOEb_DDuqJiDjECtnEuDSsZogOQ6lhbyoUPJkC7sSX9pznUAEfcnKLrQWnd8j4R4i7FxPINkxQ8fPcMLN8Rh-9mQt8-Vs36Oftzfb6njw-3T1cXz0SK_q-EqcEVVYNnhvPqbPWddIyJkdOPZ2kkmqyoxmHsZskp9KZ3lIlFHSiF85LLzbo2zq3eXpbmmv9mpYc25eaKyZ7JXpJG3W5Uru2Ah2iTzUb246DfbApgg-tfzV2SsiON9EGsVVgcyolg9eH3PaRj5pRfUpGr8nolow-JaOPTcNXTWls3EH-Z-X_oj_ePJO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918593580</pqid></control><display><type>article</type><title>The spatiotemporal scale effect on vegetation interannual trend estimates based on satellite products over Qinghai-Tibet Plateau</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Ma, Dujuan ; Wu, Xiaodan ; Wang, Jingping ; Mu, Cuicui</creator><creatorcontrib>Ma, Dujuan ; Wu, Xiaodan ; Wang, Jingping ; Mu, Cuicui</creatorcontrib><description>The trend estimate of vegetation change is essential to understand the change rule of the ecosystem. Previous studies were mainly focused on quantifying trends or analyzing their spatial distribution characteristics. Nevertheless, the uncertainties of trend estimates caused by spatiotemporal scale effects have rarely been studied. In response to this challenge, this study aims to investigate spatiotemporal scale effects on trend estimates using Moderate-Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and Gross Primary Productivity (GPP) products from 2001 to 2019 in the Qinghai-Tibet Plateau (QTP). Moreover, the possible influencing factors on spatiotemporal scale effect, including spatial heterogeneity, topography, and vegetation types, were explored. The results indicate that the spatial scale effect depends more on the dataset with a coarser spatial resolution, and temporal scale effects depend on the time span of datasets. Unexpectedly, the trend estimates on the 8-day and yearly scale are much closer than that on the monthly scale. In addition, in areas with low spatial heterogeneity, low topography variability, and sparse vegetation, the spatiotemporal scale effect can be ignored, and vice versa. The results in this study help deepen the consciousness and understanding of spatiotemporal scale effects on trend detection.</description><identifier>ISSN: 1009-637X</identifier><identifier>EISSN: 1861-9568</identifier><identifier>DOI: 10.1007/s11442-023-2113-y</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Earth and Environmental Science ; Ecosystems ; Estimates ; Geographical Information Systems/Cartography ; Geography ; Heterogeneity ; Nature Conservation ; Physical Geography ; Remote Sensing/Photogrammetry ; Spatial distribution ; Topography ; Trends ; Vegetation ; Vegetation effects</subject><ispartof>Journal of geographical sciences, 2023-05, Vol.33 (5), p.924-944</ispartof><rights>Science in China Press 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Science in China Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-d9309c96f2af20dccd48c118720f0b8989bc7a7674b8208da5c0939e4353df8f3</citedby><cites>FETCH-LOGICAL-c355t-d9309c96f2af20dccd48c118720f0b8989bc7a7674b8208da5c0939e4353df8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11442-023-2113-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918593580?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21386,27922,27923,33742,41486,42555,43803,51317,64383,64387,72239</link.rule.ids></links><search><creatorcontrib>Ma, Dujuan</creatorcontrib><creatorcontrib>Wu, Xiaodan</creatorcontrib><creatorcontrib>Wang, Jingping</creatorcontrib><creatorcontrib>Mu, Cuicui</creatorcontrib><title>The spatiotemporal scale effect on vegetation interannual trend estimates based on satellite products over Qinghai-Tibet Plateau</title><title>Journal of geographical sciences</title><addtitle>J. Geogr. Sci</addtitle><description>The trend estimate of vegetation change is essential to understand the change rule of the ecosystem. Previous studies were mainly focused on quantifying trends or analyzing their spatial distribution characteristics. Nevertheless, the uncertainties of trend estimates caused by spatiotemporal scale effects have rarely been studied. In response to this challenge, this study aims to investigate spatiotemporal scale effects on trend estimates using Moderate-Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and Gross Primary Productivity (GPP) products from 2001 to 2019 in the Qinghai-Tibet Plateau (QTP). Moreover, the possible influencing factors on spatiotemporal scale effect, including spatial heterogeneity, topography, and vegetation types, were explored. The results indicate that the spatial scale effect depends more on the dataset with a coarser spatial resolution, and temporal scale effects depend on the time span of datasets. Unexpectedly, the trend estimates on the 8-day and yearly scale are much closer than that on the monthly scale. In addition, in areas with low spatial heterogeneity, low topography variability, and sparse vegetation, the spatiotemporal scale effect can be ignored, and vice versa. The results in this study help deepen the consciousness and understanding of spatiotemporal scale effects on trend detection.</description><subject>Earth and Environmental Science</subject><subject>Ecosystems</subject><subject>Estimates</subject><subject>Geographical Information Systems/Cartography</subject><subject>Geography</subject><subject>Heterogeneity</subject><subject>Nature Conservation</subject><subject>Physical Geography</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Spatial distribution</subject><subject>Topography</subject><subject>Trends</subject><subject>Vegetation</subject><subject>Vegetation effects</subject><issn>1009-637X</issn><issn>1861-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kU1rXCEUhqWk0GTaH9Cd0LWpH_dDlyHkCwJJYQrdiVePE8Mdnag3MLv-9DrcQlfFxdHD8x5fzovQV0YvGaXj98JY13FCuSCcMUGOH9A5kwMjqh_kWbtTqsggxl-f0EUpr5QK1Q38HP3evgAuB1NDqrA_pGxmXKyZAYP3YCtOEb_DDuqJiDjECtnEuDSsZogOQ6lhbyoUPJkC7sSX9pznUAEfcnKLrQWnd8j4R4i7FxPINkxQ8fPcMLN8Rh-9mQt8-Vs36Oftzfb6njw-3T1cXz0SK_q-EqcEVVYNnhvPqbPWddIyJkdOPZ2kkmqyoxmHsZskp9KZ3lIlFHSiF85LLzbo2zq3eXpbmmv9mpYc25eaKyZ7JXpJG3W5Uru2Ah2iTzUb246DfbApgg-tfzV2SsiON9EGsVVgcyolg9eH3PaRj5pRfUpGr8nolow-JaOPTcNXTWls3EH-Z-X_oj_ePJO4</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Ma, Dujuan</creator><creator>Wu, Xiaodan</creator><creator>Wang, Jingping</creator><creator>Mu, Cuicui</creator><general>Science Press</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230501</creationdate><title>The spatiotemporal scale effect on vegetation interannual trend estimates based on satellite products over Qinghai-Tibet Plateau</title><author>Ma, Dujuan ; Wu, Xiaodan ; Wang, Jingping ; Mu, Cuicui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-d9309c96f2af20dccd48c118720f0b8989bc7a7674b8208da5c0939e4353df8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Earth and Environmental Science</topic><topic>Ecosystems</topic><topic>Estimates</topic><topic>Geographical Information Systems/Cartography</topic><topic>Geography</topic><topic>Heterogeneity</topic><topic>Nature Conservation</topic><topic>Physical Geography</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Spatial distribution</topic><topic>Topography</topic><topic>Trends</topic><topic>Vegetation</topic><topic>Vegetation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Dujuan</creatorcontrib><creatorcontrib>Wu, Xiaodan</creatorcontrib><creatorcontrib>Wang, Jingping</creatorcontrib><creatorcontrib>Mu, Cuicui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of geographical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Dujuan</au><au>Wu, Xiaodan</au><au>Wang, Jingping</au><au>Mu, Cuicui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The spatiotemporal scale effect on vegetation interannual trend estimates based on satellite products over Qinghai-Tibet Plateau</atitle><jtitle>Journal of geographical sciences</jtitle><stitle>J. Geogr. Sci</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><spage>924</spage><epage>944</epage><pages>924-944</pages><issn>1009-637X</issn><eissn>1861-9568</eissn><abstract>The trend estimate of vegetation change is essential to understand the change rule of the ecosystem. Previous studies were mainly focused on quantifying trends or analyzing their spatial distribution characteristics. Nevertheless, the uncertainties of trend estimates caused by spatiotemporal scale effects have rarely been studied. In response to this challenge, this study aims to investigate spatiotemporal scale effects on trend estimates using Moderate-Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and Gross Primary Productivity (GPP) products from 2001 to 2019 in the Qinghai-Tibet Plateau (QTP). Moreover, the possible influencing factors on spatiotemporal scale effect, including spatial heterogeneity, topography, and vegetation types, were explored. The results indicate that the spatial scale effect depends more on the dataset with a coarser spatial resolution, and temporal scale effects depend on the time span of datasets. Unexpectedly, the trend estimates on the 8-day and yearly scale are much closer than that on the monthly scale. In addition, in areas with low spatial heterogeneity, low topography variability, and sparse vegetation, the spatiotemporal scale effect can be ignored, and vice versa. The results in this study help deepen the consciousness and understanding of spatiotemporal scale effects on trend detection.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11442-023-2113-y</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-637X |
ispartof | Journal of geographical sciences, 2023-05, Vol.33 (5), p.924-944 |
issn | 1009-637X 1861-9568 |
language | eng |
recordid | cdi_proquest_journals_2918593580 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Earth and Environmental Science Ecosystems Estimates Geographical Information Systems/Cartography Geography Heterogeneity Nature Conservation Physical Geography Remote Sensing/Photogrammetry Spatial distribution Topography Trends Vegetation Vegetation effects |
title | The spatiotemporal scale effect on vegetation interannual trend estimates based on satellite products over Qinghai-Tibet Plateau |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20spatiotemporal%20scale%20effect%20on%20vegetation%20interannual%20trend%20estimates%20based%20on%20satellite%20products%20over%20Qinghai-Tibet%20Plateau&rft.jtitle=Journal%20of%20geographical%20sciences&rft.au=Ma,%20Dujuan&rft.date=2023-05-01&rft.volume=33&rft.issue=5&rft.spage=924&rft.epage=944&rft.pages=924-944&rft.issn=1009-637X&rft.eissn=1861-9568&rft_id=info:doi/10.1007/s11442-023-2113-y&rft_dat=%3Cgale_proqu%3EA749384259%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918593580&rft_id=info:pmid/&rft_galeid=A749384259&rfr_iscdi=true |