The spatiotemporal scale effect on vegetation interannual trend estimates based on satellite products over Qinghai-Tibet Plateau

The trend estimate of vegetation change is essential to understand the change rule of the ecosystem. Previous studies were mainly focused on quantifying trends or analyzing their spatial distribution characteristics. Nevertheless, the uncertainties of trend estimates caused by spatiotemporal scale e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geographical sciences 2023-05, Vol.33 (5), p.924-944
Hauptverfasser: Ma, Dujuan, Wu, Xiaodan, Wang, Jingping, Mu, Cuicui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 944
container_issue 5
container_start_page 924
container_title Journal of geographical sciences
container_volume 33
creator Ma, Dujuan
Wu, Xiaodan
Wang, Jingping
Mu, Cuicui
description The trend estimate of vegetation change is essential to understand the change rule of the ecosystem. Previous studies were mainly focused on quantifying trends or analyzing their spatial distribution characteristics. Nevertheless, the uncertainties of trend estimates caused by spatiotemporal scale effects have rarely been studied. In response to this challenge, this study aims to investigate spatiotemporal scale effects on trend estimates using Moderate-Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and Gross Primary Productivity (GPP) products from 2001 to 2019 in the Qinghai-Tibet Plateau (QTP). Moreover, the possible influencing factors on spatiotemporal scale effect, including spatial heterogeneity, topography, and vegetation types, were explored. The results indicate that the spatial scale effect depends more on the dataset with a coarser spatial resolution, and temporal scale effects depend on the time span of datasets. Unexpectedly, the trend estimates on the 8-day and yearly scale are much closer than that on the monthly scale. In addition, in areas with low spatial heterogeneity, low topography variability, and sparse vegetation, the spatiotemporal scale effect can be ignored, and vice versa. The results in this study help deepen the consciousness and understanding of spatiotemporal scale effects on trend detection.
doi_str_mv 10.1007/s11442-023-2113-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918593580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749384259</galeid><sourcerecordid>A749384259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-d9309c96f2af20dccd48c118720f0b8989bc7a7674b8208da5c0939e4353df8f3</originalsourceid><addsrcrecordid>eNp1kU1rXCEUhqWk0GTaH9Cd0LWpH_dDlyHkCwJJYQrdiVePE8Mdnag3MLv-9DrcQlfFxdHD8x5fzovQV0YvGaXj98JY13FCuSCcMUGOH9A5kwMjqh_kWbtTqsggxl-f0EUpr5QK1Q38HP3evgAuB1NDqrA_pGxmXKyZAYP3YCtOEb_DDuqJiDjECtnEuDSsZogOQ6lhbyoUPJkC7sSX9pznUAEfcnKLrQWnd8j4R4i7FxPINkxQ8fPcMLN8Rh-9mQt8-Vs36Oftzfb6njw-3T1cXz0SK_q-EqcEVVYNnhvPqbPWddIyJkdOPZ2kkmqyoxmHsZskp9KZ3lIlFHSiF85LLzbo2zq3eXpbmmv9mpYc25eaKyZ7JXpJG3W5Uru2Ah2iTzUb246DfbApgg-tfzV2SsiON9EGsVVgcyolg9eH3PaRj5pRfUpGr8nolow-JaOPTcNXTWls3EH-Z-X_oj_ePJO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918593580</pqid></control><display><type>article</type><title>The spatiotemporal scale effect on vegetation interannual trend estimates based on satellite products over Qinghai-Tibet Plateau</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Ma, Dujuan ; Wu, Xiaodan ; Wang, Jingping ; Mu, Cuicui</creator><creatorcontrib>Ma, Dujuan ; Wu, Xiaodan ; Wang, Jingping ; Mu, Cuicui</creatorcontrib><description>The trend estimate of vegetation change is essential to understand the change rule of the ecosystem. Previous studies were mainly focused on quantifying trends or analyzing their spatial distribution characteristics. Nevertheless, the uncertainties of trend estimates caused by spatiotemporal scale effects have rarely been studied. In response to this challenge, this study aims to investigate spatiotemporal scale effects on trend estimates using Moderate-Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and Gross Primary Productivity (GPP) products from 2001 to 2019 in the Qinghai-Tibet Plateau (QTP). Moreover, the possible influencing factors on spatiotemporal scale effect, including spatial heterogeneity, topography, and vegetation types, were explored. The results indicate that the spatial scale effect depends more on the dataset with a coarser spatial resolution, and temporal scale effects depend on the time span of datasets. Unexpectedly, the trend estimates on the 8-day and yearly scale are much closer than that on the monthly scale. In addition, in areas with low spatial heterogeneity, low topography variability, and sparse vegetation, the spatiotemporal scale effect can be ignored, and vice versa. The results in this study help deepen the consciousness and understanding of spatiotemporal scale effects on trend detection.</description><identifier>ISSN: 1009-637X</identifier><identifier>EISSN: 1861-9568</identifier><identifier>DOI: 10.1007/s11442-023-2113-y</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Earth and Environmental Science ; Ecosystems ; Estimates ; Geographical Information Systems/Cartography ; Geography ; Heterogeneity ; Nature Conservation ; Physical Geography ; Remote Sensing/Photogrammetry ; Spatial distribution ; Topography ; Trends ; Vegetation ; Vegetation effects</subject><ispartof>Journal of geographical sciences, 2023-05, Vol.33 (5), p.924-944</ispartof><rights>Science in China Press 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Science in China Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-d9309c96f2af20dccd48c118720f0b8989bc7a7674b8208da5c0939e4353df8f3</citedby><cites>FETCH-LOGICAL-c355t-d9309c96f2af20dccd48c118720f0b8989bc7a7674b8208da5c0939e4353df8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11442-023-2113-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918593580?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21386,27922,27923,33742,41486,42555,43803,51317,64383,64387,72239</link.rule.ids></links><search><creatorcontrib>Ma, Dujuan</creatorcontrib><creatorcontrib>Wu, Xiaodan</creatorcontrib><creatorcontrib>Wang, Jingping</creatorcontrib><creatorcontrib>Mu, Cuicui</creatorcontrib><title>The spatiotemporal scale effect on vegetation interannual trend estimates based on satellite products over Qinghai-Tibet Plateau</title><title>Journal of geographical sciences</title><addtitle>J. Geogr. Sci</addtitle><description>The trend estimate of vegetation change is essential to understand the change rule of the ecosystem. Previous studies were mainly focused on quantifying trends or analyzing their spatial distribution characteristics. Nevertheless, the uncertainties of trend estimates caused by spatiotemporal scale effects have rarely been studied. In response to this challenge, this study aims to investigate spatiotemporal scale effects on trend estimates using Moderate-Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and Gross Primary Productivity (GPP) products from 2001 to 2019 in the Qinghai-Tibet Plateau (QTP). Moreover, the possible influencing factors on spatiotemporal scale effect, including spatial heterogeneity, topography, and vegetation types, were explored. The results indicate that the spatial scale effect depends more on the dataset with a coarser spatial resolution, and temporal scale effects depend on the time span of datasets. Unexpectedly, the trend estimates on the 8-day and yearly scale are much closer than that on the monthly scale. In addition, in areas with low spatial heterogeneity, low topography variability, and sparse vegetation, the spatiotemporal scale effect can be ignored, and vice versa. The results in this study help deepen the consciousness and understanding of spatiotemporal scale effects on trend detection.</description><subject>Earth and Environmental Science</subject><subject>Ecosystems</subject><subject>Estimates</subject><subject>Geographical Information Systems/Cartography</subject><subject>Geography</subject><subject>Heterogeneity</subject><subject>Nature Conservation</subject><subject>Physical Geography</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Spatial distribution</subject><subject>Topography</subject><subject>Trends</subject><subject>Vegetation</subject><subject>Vegetation effects</subject><issn>1009-637X</issn><issn>1861-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kU1rXCEUhqWk0GTaH9Cd0LWpH_dDlyHkCwJJYQrdiVePE8Mdnag3MLv-9DrcQlfFxdHD8x5fzovQV0YvGaXj98JY13FCuSCcMUGOH9A5kwMjqh_kWbtTqsggxl-f0EUpr5QK1Q38HP3evgAuB1NDqrA_pGxmXKyZAYP3YCtOEb_DDuqJiDjECtnEuDSsZogOQ6lhbyoUPJkC7sSX9pznUAEfcnKLrQWnd8j4R4i7FxPINkxQ8fPcMLN8Rh-9mQt8-Vs36Oftzfb6njw-3T1cXz0SK_q-EqcEVVYNnhvPqbPWddIyJkdOPZ2kkmqyoxmHsZskp9KZ3lIlFHSiF85LLzbo2zq3eXpbmmv9mpYc25eaKyZ7JXpJG3W5Uru2Ah2iTzUb246DfbApgg-tfzV2SsiON9EGsVVgcyolg9eH3PaRj5pRfUpGr8nolow-JaOPTcNXTWls3EH-Z-X_oj_ePJO4</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Ma, Dujuan</creator><creator>Wu, Xiaodan</creator><creator>Wang, Jingping</creator><creator>Mu, Cuicui</creator><general>Science Press</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230501</creationdate><title>The spatiotemporal scale effect on vegetation interannual trend estimates based on satellite products over Qinghai-Tibet Plateau</title><author>Ma, Dujuan ; Wu, Xiaodan ; Wang, Jingping ; Mu, Cuicui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-d9309c96f2af20dccd48c118720f0b8989bc7a7674b8208da5c0939e4353df8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Earth and Environmental Science</topic><topic>Ecosystems</topic><topic>Estimates</topic><topic>Geographical Information Systems/Cartography</topic><topic>Geography</topic><topic>Heterogeneity</topic><topic>Nature Conservation</topic><topic>Physical Geography</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Spatial distribution</topic><topic>Topography</topic><topic>Trends</topic><topic>Vegetation</topic><topic>Vegetation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Dujuan</creatorcontrib><creatorcontrib>Wu, Xiaodan</creatorcontrib><creatorcontrib>Wang, Jingping</creatorcontrib><creatorcontrib>Mu, Cuicui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of geographical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Dujuan</au><au>Wu, Xiaodan</au><au>Wang, Jingping</au><au>Mu, Cuicui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The spatiotemporal scale effect on vegetation interannual trend estimates based on satellite products over Qinghai-Tibet Plateau</atitle><jtitle>Journal of geographical sciences</jtitle><stitle>J. Geogr. Sci</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><spage>924</spage><epage>944</epage><pages>924-944</pages><issn>1009-637X</issn><eissn>1861-9568</eissn><abstract>The trend estimate of vegetation change is essential to understand the change rule of the ecosystem. Previous studies were mainly focused on quantifying trends or analyzing their spatial distribution characteristics. Nevertheless, the uncertainties of trend estimates caused by spatiotemporal scale effects have rarely been studied. In response to this challenge, this study aims to investigate spatiotemporal scale effects on trend estimates using Moderate-Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and Gross Primary Productivity (GPP) products from 2001 to 2019 in the Qinghai-Tibet Plateau (QTP). Moreover, the possible influencing factors on spatiotemporal scale effect, including spatial heterogeneity, topography, and vegetation types, were explored. The results indicate that the spatial scale effect depends more on the dataset with a coarser spatial resolution, and temporal scale effects depend on the time span of datasets. Unexpectedly, the trend estimates on the 8-day and yearly scale are much closer than that on the monthly scale. In addition, in areas with low spatial heterogeneity, low topography variability, and sparse vegetation, the spatiotemporal scale effect can be ignored, and vice versa. The results in this study help deepen the consciousness and understanding of spatiotemporal scale effects on trend detection.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11442-023-2113-y</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1009-637X
ispartof Journal of geographical sciences, 2023-05, Vol.33 (5), p.924-944
issn 1009-637X
1861-9568
language eng
recordid cdi_proquest_journals_2918593580
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Earth and Environmental Science
Ecosystems
Estimates
Geographical Information Systems/Cartography
Geography
Heterogeneity
Nature Conservation
Physical Geography
Remote Sensing/Photogrammetry
Spatial distribution
Topography
Trends
Vegetation
Vegetation effects
title The spatiotemporal scale effect on vegetation interannual trend estimates based on satellite products over Qinghai-Tibet Plateau
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20spatiotemporal%20scale%20effect%20on%20vegetation%20interannual%20trend%20estimates%20based%20on%20satellite%20products%20over%20Qinghai-Tibet%20Plateau&rft.jtitle=Journal%20of%20geographical%20sciences&rft.au=Ma,%20Dujuan&rft.date=2023-05-01&rft.volume=33&rft.issue=5&rft.spage=924&rft.epage=944&rft.pages=924-944&rft.issn=1009-637X&rft.eissn=1861-9568&rft_id=info:doi/10.1007/s11442-023-2113-y&rft_dat=%3Cgale_proqu%3EA749384259%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918593580&rft_id=info:pmid/&rft_galeid=A749384259&rfr_iscdi=true