The origin of potential rise during charging of Li-O2 batteries

When aprotic Li-O2 batteries recharge, the solid Li2O2 in the positive electrode is oxidized, which often exhibits a continuous or step increase in the charging potential as a function of the charging capacity, and its origin remains incompletely understood. Here, we report a model study of electro-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Chemistry 2017-12, Vol.60 (12), p.1527-1532
Hauptverfasser: Guo, Limin, Wang, Jiawei, Ma, Shunchao, Zhang, Yantao, Wang, Erkang, Peng, Zhangquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1532
container_issue 12
container_start_page 1527
container_title Science China. Chemistry
container_volume 60
creator Guo, Limin
Wang, Jiawei
Ma, Shunchao
Zhang, Yantao
Wang, Erkang
Peng, Zhangquan
description When aprotic Li-O2 batteries recharge, the solid Li2O2 in the positive electrode is oxidized, which often exhibits a continuous or step increase in the charging potential as a function of the charging capacity, and its origin remains incompletely understood. Here, we report a model study of electro-oxidation of a Li2O2 film on an Au electrode using voltammetry coupled with in situ Raman spectroscopy. It was found that the charging reaction initializes at the positive electrodelLizO2 interface, instead of the previously presumed Li2O2 surface, and consists of two temporally and spatially separated Li2O2 oxidation processes, accounting for the potential rise during charging of Li-O2 batteries. Moreover, the electrode surface-initialized oxidation can disintegrate the Li2O2 film resulting in a loss of Li2O2 into electrolyte solution, which drastically decreases the charging efficiency and highlights the importance of using soluble electro-catalyst for the complete charging of Li-02 batteries.
doi_str_mv 10.1007/s11426-017-9085-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918592804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674018272</cqvip_id><sourcerecordid>2918592804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2585-677e3015f5fc48a141d91f71bb9bc0dac14e7005be76ac6f94c82cf966ee9ce63</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpD2CLYDb4nPhrQqjiS6rUpcyW49qpq5Kkdjrw73GUCjZuuRve9967B6FbIA9AiHhMABXlmIDAikiG2QWageQKgxTkMs9cVFhQBddokdKe5CpLQgWboafNzhVdDE1oi84XfTe4dgjmUMSQXLE9xdA2hd2Z2IxDVqwCXtOiNsPgYnDpBl15c0huce5z9Pn6slm-49X67WP5vMKWsnwRF8KVBJhn3lbSQAVbBV5AXavakq2xUDlBCKud4MZyryorqfWKc-eUdbyco_tpbx-748mlQe-7U2xzpM5_SaaoJFVWwaSysUspOq_7GL5M_NZA9IhKT6h0RqVHVJplD508qR-fdfFv83-mu3PQrmubY_b9JmXWBCQVtPwBqDV1kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918592804</pqid></control><display><type>article</type><title>The origin of potential rise during charging of Li-O2 batteries</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Guo, Limin ; Wang, Jiawei ; Ma, Shunchao ; Zhang, Yantao ; Wang, Erkang ; Peng, Zhangquan</creator><creatorcontrib>Guo, Limin ; Wang, Jiawei ; Ma, Shunchao ; Zhang, Yantao ; Wang, Erkang ; Peng, Zhangquan</creatorcontrib><description>When aprotic Li-O2 batteries recharge, the solid Li2O2 in the positive electrode is oxidized, which often exhibits a continuous or step increase in the charging potential as a function of the charging capacity, and its origin remains incompletely understood. Here, we report a model study of electro-oxidation of a Li2O2 film on an Au electrode using voltammetry coupled with in situ Raman spectroscopy. It was found that the charging reaction initializes at the positive electrodelLizO2 interface, instead of the previously presumed Li2O2 surface, and consists of two temporally and spatially separated Li2O2 oxidation processes, accounting for the potential rise during charging of Li-O2 batteries. Moreover, the electrode surface-initialized oxidation can disintegrate the Li2O2 film resulting in a loss of Li2O2 into electrolyte solution, which drastically decreases the charging efficiency and highlights the importance of using soluble electro-catalyst for the complete charging of Li-02 batteries.</description><identifier>ISSN: 1674-7291</identifier><identifier>EISSN: 1869-1870</identifier><identifier>DOI: 10.1007/s11426-017-9085-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Charging ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Decomposition ; Efficiency ; Electrodes ; Electrolytes ; Metal air batteries ; Oxidation ; Raman spectroscopy ; Rechargeable batteries ; Voltammetry</subject><ispartof>Science China. Chemistry, 2017-12, Vol.60 (12), p.1527-1532</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany 2017</rights><rights>Science China Press and Springer-Verlag GmbH Germany 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2585-677e3015f5fc48a141d91f71bb9bc0dac14e7005be76ac6f94c82cf966ee9ce63</citedby><cites>FETCH-LOGICAL-c2585-677e3015f5fc48a141d91f71bb9bc0dac14e7005be76ac6f94c82cf966ee9ce63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60113X/60113X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11426-017-9085-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918592804?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,21388,21389,21390,23255,27923,27924,33529,33702,33743,34004,34313,41487,42556,43658,43786,43804,43952,44066,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Guo, Limin</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Ma, Shunchao</creatorcontrib><creatorcontrib>Zhang, Yantao</creatorcontrib><creatorcontrib>Wang, Erkang</creatorcontrib><creatorcontrib>Peng, Zhangquan</creatorcontrib><title>The origin of potential rise during charging of Li-O2 batteries</title><title>Science China. Chemistry</title><addtitle>Sci. China Chem</addtitle><addtitle>SCIENCE CHINA Chemistry</addtitle><description>When aprotic Li-O2 batteries recharge, the solid Li2O2 in the positive electrode is oxidized, which often exhibits a continuous or step increase in the charging potential as a function of the charging capacity, and its origin remains incompletely understood. Here, we report a model study of electro-oxidation of a Li2O2 film on an Au electrode using voltammetry coupled with in situ Raman spectroscopy. It was found that the charging reaction initializes at the positive electrodelLizO2 interface, instead of the previously presumed Li2O2 surface, and consists of two temporally and spatially separated Li2O2 oxidation processes, accounting for the potential rise during charging of Li-O2 batteries. Moreover, the electrode surface-initialized oxidation can disintegrate the Li2O2 film resulting in a loss of Li2O2 into electrolyte solution, which drastically decreases the charging efficiency and highlights the importance of using soluble electro-catalyst for the complete charging of Li-02 batteries.</description><subject>Charging</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Decomposition</subject><subject>Efficiency</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Metal air batteries</subject><subject>Oxidation</subject><subject>Raman spectroscopy</subject><subject>Rechargeable batteries</subject><subject>Voltammetry</subject><issn>1674-7291</issn><issn>1869-1870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EElXpD2CLYDb4nPhrQqjiS6rUpcyW49qpq5Kkdjrw73GUCjZuuRve9967B6FbIA9AiHhMABXlmIDAikiG2QWageQKgxTkMs9cVFhQBddokdKe5CpLQgWboafNzhVdDE1oi84XfTe4dgjmUMSQXLE9xdA2hd2Z2IxDVqwCXtOiNsPgYnDpBl15c0huce5z9Pn6slm-49X67WP5vMKWsnwRF8KVBJhn3lbSQAVbBV5AXavakq2xUDlBCKud4MZyryorqfWKc-eUdbyco_tpbx-748mlQe-7U2xzpM5_SaaoJFVWwaSysUspOq_7GL5M_NZA9IhKT6h0RqVHVJplD508qR-fdfFv83-mu3PQrmubY_b9JmXWBCQVtPwBqDV1kw</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Guo, Limin</creator><creator>Wang, Jiawei</creator><creator>Ma, Shunchao</creator><creator>Zhang, Yantao</creator><creator>Wang, Erkang</creator><creator>Peng, Zhangquan</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20171201</creationdate><title>The origin of potential rise during charging of Li-O2 batteries</title><author>Guo, Limin ; Wang, Jiawei ; Ma, Shunchao ; Zhang, Yantao ; Wang, Erkang ; Peng, Zhangquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2585-677e3015f5fc48a141d91f71bb9bc0dac14e7005be76ac6f94c82cf966ee9ce63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Charging</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Decomposition</topic><topic>Efficiency</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Metal air batteries</topic><topic>Oxidation</topic><topic>Raman spectroscopy</topic><topic>Rechargeable batteries</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Limin</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Ma, Shunchao</creatorcontrib><creatorcontrib>Zhang, Yantao</creatorcontrib><creatorcontrib>Wang, Erkang</creatorcontrib><creatorcontrib>Peng, Zhangquan</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Science China. Chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Limin</au><au>Wang, Jiawei</au><au>Ma, Shunchao</au><au>Zhang, Yantao</au><au>Wang, Erkang</au><au>Peng, Zhangquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The origin of potential rise during charging of Li-O2 batteries</atitle><jtitle>Science China. Chemistry</jtitle><stitle>Sci. China Chem</stitle><addtitle>SCIENCE CHINA Chemistry</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>60</volume><issue>12</issue><spage>1527</spage><epage>1532</epage><pages>1527-1532</pages><issn>1674-7291</issn><eissn>1869-1870</eissn><abstract>When aprotic Li-O2 batteries recharge, the solid Li2O2 in the positive electrode is oxidized, which often exhibits a continuous or step increase in the charging potential as a function of the charging capacity, and its origin remains incompletely understood. Here, we report a model study of electro-oxidation of a Li2O2 film on an Au electrode using voltammetry coupled with in situ Raman spectroscopy. It was found that the charging reaction initializes at the positive electrodelLizO2 interface, instead of the previously presumed Li2O2 surface, and consists of two temporally and spatially separated Li2O2 oxidation processes, accounting for the potential rise during charging of Li-O2 batteries. Moreover, the electrode surface-initialized oxidation can disintegrate the Li2O2 film resulting in a loss of Li2O2 into electrolyte solution, which drastically decreases the charging efficiency and highlights the importance of using soluble electro-catalyst for the complete charging of Li-02 batteries.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11426-017-9085-5</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7291
ispartof Science China. Chemistry, 2017-12, Vol.60 (12), p.1527-1532
issn 1674-7291
1869-1870
language eng
recordid cdi_proquest_journals_2918592804
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Charging
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Decomposition
Efficiency
Electrodes
Electrolytes
Metal air batteries
Oxidation
Raman spectroscopy
Rechargeable batteries
Voltammetry
title The origin of potential rise during charging of Li-O2 batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20origin%20of%20potential%20rise%20during%20charging%20of%20Li-O2%20batteries&rft.jtitle=Science%20China.%20Chemistry&rft.au=Guo,%20Limin&rft.date=2017-12-01&rft.volume=60&rft.issue=12&rft.spage=1527&rft.epage=1532&rft.pages=1527-1532&rft.issn=1674-7291&rft.eissn=1869-1870&rft_id=info:doi/10.1007/s11426-017-9085-5&rft_dat=%3Cproquest_cross%3E2918592804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918592804&rft_id=info:pmid/&rft_cqvip_id=674018272&rfr_iscdi=true