The origin of potential rise during charging of Li-O2 batteries
When aprotic Li-O2 batteries recharge, the solid Li2O2 in the positive electrode is oxidized, which often exhibits a continuous or step increase in the charging potential as a function of the charging capacity, and its origin remains incompletely understood. Here, we report a model study of electro-...
Gespeichert in:
Veröffentlicht in: | Science China. Chemistry 2017-12, Vol.60 (12), p.1527-1532 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1532 |
---|---|
container_issue | 12 |
container_start_page | 1527 |
container_title | Science China. Chemistry |
container_volume | 60 |
creator | Guo, Limin Wang, Jiawei Ma, Shunchao Zhang, Yantao Wang, Erkang Peng, Zhangquan |
description | When aprotic Li-O2 batteries recharge, the solid Li2O2 in the positive electrode is oxidized, which often exhibits a continuous or step increase in the charging potential as a function of the charging capacity, and its origin remains incompletely understood. Here, we report a model study of electro-oxidation of a Li2O2 film on an Au electrode using voltammetry coupled with in situ Raman spectroscopy. It was found that the charging reaction initializes at the positive electrodelLizO2 interface, instead of the previously presumed Li2O2 surface, and consists of two temporally and spatially separated Li2O2 oxidation processes, accounting for the potential rise during charging of Li-O2 batteries. Moreover, the electrode surface-initialized oxidation can disintegrate the Li2O2 film resulting in a loss of Li2O2 into electrolyte solution, which drastically decreases the charging efficiency and highlights the importance of using soluble electro-catalyst for the complete charging of Li-02 batteries. |
doi_str_mv | 10.1007/s11426-017-9085-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918592804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674018272</cqvip_id><sourcerecordid>2918592804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2585-677e3015f5fc48a141d91f71bb9bc0dac14e7005be76ac6f94c82cf966ee9ce63</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpD2CLYDb4nPhrQqjiS6rUpcyW49qpq5Kkdjrw73GUCjZuuRve9967B6FbIA9AiHhMABXlmIDAikiG2QWageQKgxTkMs9cVFhQBddokdKe5CpLQgWboafNzhVdDE1oi84XfTe4dgjmUMSQXLE9xdA2hd2Z2IxDVqwCXtOiNsPgYnDpBl15c0huce5z9Pn6slm-49X67WP5vMKWsnwRF8KVBJhn3lbSQAVbBV5AXavakq2xUDlBCKud4MZyryorqfWKc-eUdbyco_tpbx-748mlQe-7U2xzpM5_SaaoJFVWwaSysUspOq_7GL5M_NZA9IhKT6h0RqVHVJplD508qR-fdfFv83-mu3PQrmubY_b9JmXWBCQVtPwBqDV1kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918592804</pqid></control><display><type>article</type><title>The origin of potential rise during charging of Li-O2 batteries</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Guo, Limin ; Wang, Jiawei ; Ma, Shunchao ; Zhang, Yantao ; Wang, Erkang ; Peng, Zhangquan</creator><creatorcontrib>Guo, Limin ; Wang, Jiawei ; Ma, Shunchao ; Zhang, Yantao ; Wang, Erkang ; Peng, Zhangquan</creatorcontrib><description>When aprotic Li-O2 batteries recharge, the solid Li2O2 in the positive electrode is oxidized, which often exhibits a continuous or step increase in the charging potential as a function of the charging capacity, and its origin remains incompletely understood. Here, we report a model study of electro-oxidation of a Li2O2 film on an Au electrode using voltammetry coupled with in situ Raman spectroscopy. It was found that the charging reaction initializes at the positive electrodelLizO2 interface, instead of the previously presumed Li2O2 surface, and consists of two temporally and spatially separated Li2O2 oxidation processes, accounting for the potential rise during charging of Li-O2 batteries. Moreover, the electrode surface-initialized oxidation can disintegrate the Li2O2 film resulting in a loss of Li2O2 into electrolyte solution, which drastically decreases the charging efficiency and highlights the importance of using soluble electro-catalyst for the complete charging of Li-02 batteries.</description><identifier>ISSN: 1674-7291</identifier><identifier>EISSN: 1869-1870</identifier><identifier>DOI: 10.1007/s11426-017-9085-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Charging ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Decomposition ; Efficiency ; Electrodes ; Electrolytes ; Metal air batteries ; Oxidation ; Raman spectroscopy ; Rechargeable batteries ; Voltammetry</subject><ispartof>Science China. Chemistry, 2017-12, Vol.60 (12), p.1527-1532</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany 2017</rights><rights>Science China Press and Springer-Verlag GmbH Germany 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2585-677e3015f5fc48a141d91f71bb9bc0dac14e7005be76ac6f94c82cf966ee9ce63</citedby><cites>FETCH-LOGICAL-c2585-677e3015f5fc48a141d91f71bb9bc0dac14e7005be76ac6f94c82cf966ee9ce63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60113X/60113X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11426-017-9085-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918592804?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,21388,21389,21390,23255,27923,27924,33529,33702,33743,34004,34313,41487,42556,43658,43786,43804,43952,44066,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Guo, Limin</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Ma, Shunchao</creatorcontrib><creatorcontrib>Zhang, Yantao</creatorcontrib><creatorcontrib>Wang, Erkang</creatorcontrib><creatorcontrib>Peng, Zhangquan</creatorcontrib><title>The origin of potential rise during charging of Li-O2 batteries</title><title>Science China. Chemistry</title><addtitle>Sci. China Chem</addtitle><addtitle>SCIENCE CHINA Chemistry</addtitle><description>When aprotic Li-O2 batteries recharge, the solid Li2O2 in the positive electrode is oxidized, which often exhibits a continuous or step increase in the charging potential as a function of the charging capacity, and its origin remains incompletely understood. Here, we report a model study of electro-oxidation of a Li2O2 film on an Au electrode using voltammetry coupled with in situ Raman spectroscopy. It was found that the charging reaction initializes at the positive electrodelLizO2 interface, instead of the previously presumed Li2O2 surface, and consists of two temporally and spatially separated Li2O2 oxidation processes, accounting for the potential rise during charging of Li-O2 batteries. Moreover, the electrode surface-initialized oxidation can disintegrate the Li2O2 film resulting in a loss of Li2O2 into electrolyte solution, which drastically decreases the charging efficiency and highlights the importance of using soluble electro-catalyst for the complete charging of Li-02 batteries.</description><subject>Charging</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Decomposition</subject><subject>Efficiency</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Metal air batteries</subject><subject>Oxidation</subject><subject>Raman spectroscopy</subject><subject>Rechargeable batteries</subject><subject>Voltammetry</subject><issn>1674-7291</issn><issn>1869-1870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EElXpD2CLYDb4nPhrQqjiS6rUpcyW49qpq5Kkdjrw73GUCjZuuRve9967B6FbIA9AiHhMABXlmIDAikiG2QWageQKgxTkMs9cVFhQBddokdKe5CpLQgWboafNzhVdDE1oi84XfTe4dgjmUMSQXLE9xdA2hd2Z2IxDVqwCXtOiNsPgYnDpBl15c0huce5z9Pn6slm-49X67WP5vMKWsnwRF8KVBJhn3lbSQAVbBV5AXavakq2xUDlBCKud4MZyryorqfWKc-eUdbyco_tpbx-748mlQe-7U2xzpM5_SaaoJFVWwaSysUspOq_7GL5M_NZA9IhKT6h0RqVHVJplD508qR-fdfFv83-mu3PQrmubY_b9JmXWBCQVtPwBqDV1kw</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Guo, Limin</creator><creator>Wang, Jiawei</creator><creator>Ma, Shunchao</creator><creator>Zhang, Yantao</creator><creator>Wang, Erkang</creator><creator>Peng, Zhangquan</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20171201</creationdate><title>The origin of potential rise during charging of Li-O2 batteries</title><author>Guo, Limin ; Wang, Jiawei ; Ma, Shunchao ; Zhang, Yantao ; Wang, Erkang ; Peng, Zhangquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2585-677e3015f5fc48a141d91f71bb9bc0dac14e7005be76ac6f94c82cf966ee9ce63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Charging</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Decomposition</topic><topic>Efficiency</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Metal air batteries</topic><topic>Oxidation</topic><topic>Raman spectroscopy</topic><topic>Rechargeable batteries</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Limin</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Ma, Shunchao</creatorcontrib><creatorcontrib>Zhang, Yantao</creatorcontrib><creatorcontrib>Wang, Erkang</creatorcontrib><creatorcontrib>Peng, Zhangquan</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Science China. Chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Limin</au><au>Wang, Jiawei</au><au>Ma, Shunchao</au><au>Zhang, Yantao</au><au>Wang, Erkang</au><au>Peng, Zhangquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The origin of potential rise during charging of Li-O2 batteries</atitle><jtitle>Science China. Chemistry</jtitle><stitle>Sci. China Chem</stitle><addtitle>SCIENCE CHINA Chemistry</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>60</volume><issue>12</issue><spage>1527</spage><epage>1532</epage><pages>1527-1532</pages><issn>1674-7291</issn><eissn>1869-1870</eissn><abstract>When aprotic Li-O2 batteries recharge, the solid Li2O2 in the positive electrode is oxidized, which often exhibits a continuous or step increase in the charging potential as a function of the charging capacity, and its origin remains incompletely understood. Here, we report a model study of electro-oxidation of a Li2O2 film on an Au electrode using voltammetry coupled with in situ Raman spectroscopy. It was found that the charging reaction initializes at the positive electrodelLizO2 interface, instead of the previously presumed Li2O2 surface, and consists of two temporally and spatially separated Li2O2 oxidation processes, accounting for the potential rise during charging of Li-O2 batteries. Moreover, the electrode surface-initialized oxidation can disintegrate the Li2O2 film resulting in a loss of Li2O2 into electrolyte solution, which drastically decreases the charging efficiency and highlights the importance of using soluble electro-catalyst for the complete charging of Li-02 batteries.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11426-017-9085-5</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7291 |
ispartof | Science China. Chemistry, 2017-12, Vol.60 (12), p.1527-1532 |
issn | 1674-7291 1869-1870 |
language | eng |
recordid | cdi_proquest_journals_2918592804 |
source | ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Charging Chemistry Chemistry and Materials Science Chemistry/Food Science Decomposition Efficiency Electrodes Electrolytes Metal air batteries Oxidation Raman spectroscopy Rechargeable batteries Voltammetry |
title | The origin of potential rise during charging of Li-O2 batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20origin%20of%20potential%20rise%20during%20charging%20of%20Li-O2%20batteries&rft.jtitle=Science%20China.%20Chemistry&rft.au=Guo,%20Limin&rft.date=2017-12-01&rft.volume=60&rft.issue=12&rft.spage=1527&rft.epage=1532&rft.pages=1527-1532&rft.issn=1674-7291&rft.eissn=1869-1870&rft_id=info:doi/10.1007/s11426-017-9085-5&rft_dat=%3Cproquest_cross%3E2918592804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918592804&rft_id=info:pmid/&rft_cqvip_id=674018272&rfr_iscdi=true |