Dynamically measuring the holo-information of light fields in three-dimensional space using a periodic polarization-structured light

Spatially structured light field has attracted great attention due to its novel properties and application potential in numerous fields. Among them, the most striking one is the polarization-structured light, known as the vector beam. Here, using a periodic polarization-structured light, we propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2021-06, Vol.64 (6), p.264211, Article 264211
Hauptverfasser: Qi, ShuXia, Liu, Sheng, Han, Lei, Wei, BingYan, Li, Peng, Zhong, JinZhan, Guo, XuYue, Zhao, JianLin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 264211
container_title Science China. Physics, mechanics & astronomy
container_volume 64
creator Qi, ShuXia
Liu, Sheng
Han, Lei
Wei, BingYan
Li, Peng
Zhong, JinZhan
Guo, XuYue
Zhao, JianLin
description Spatially structured light field has attracted great attention due to its novel properties and application potential in numerous fields. Among them, the most striking one is the polarization-structured light, known as the vector beam. Here, using a periodic polarization-structured light, we propose a method to dynamically measure the holo-information of light fields, including the amplitude, phase, and polarization distributions, in three-dimensional (3D) space. The measurement system is composed of a Mach-Zender interferometer involving a liquid crystal polarized grating in the reference arm, which is simple, stable, and easy to operate. Featuring the single-shot measurement, this method supports observing the dynamic variation of object light fields. The accuracy, 3D polarimetry, and dynamic observation of this method are validated by measuring a calibrated quarter-wave plate, a vector vortex beam, a Poincaré beam, and a stressed polymethyl methacrylate sample.
doi_str_mv 10.1007/s11433-021-1686-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918585823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A726591933</galeid><sourcerecordid>A726591933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-350165e074ded7e8430b18bb2835e4ec9c9767d10e2e6684e13e837ce09be78e3</originalsourceid><addsrcrecordid>eNp1kU9P7CAUxRujiUbnA7gjcY1CofxZGvWpiYkbXROG3s5gaKnQLuat3wd_1Jq4kruAkPM7uTmnqi4puaaEyJtMKWcMk5piKpTA-qg6o0poTHUtj8tbSI4l4-q02uT8QcphmnDJz6p_94fB9t7ZEA6oB5vn5IcdmvaA9jFE7Icupt5OPg4odij43X5CnYfQZuSHoksAuPU9DLlIbEB5tA7QnBcXi0ZIPrbeoTEGm_zfLyOcpzS7aU7QroYX1UlnQ4bN931evf95eLt7wi-vj893ty_YsaaZMGsIFQ0QyVtoJSjOyJaq7bZWrAEOTjsthWwpgRqEUBwoA8WkA6K3IBWw8-pq9R1T_JwhT-YjzqlsnU2tqWrK1KyorlfVzgYwSwBTsq5MCyWoOEDny_-trEWjqWYLQFfApZhzgs6Myfc2HQwlZinIrAWZUpBZCjK6MPXK5HEJHNLPKr9D_wFNqJVJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918585823</pqid></control><display><type>article</type><title>Dynamically measuring the holo-information of light fields in three-dimensional space using a periodic polarization-structured light</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Qi, ShuXia ; Liu, Sheng ; Han, Lei ; Wei, BingYan ; Li, Peng ; Zhong, JinZhan ; Guo, XuYue ; Zhao, JianLin</creator><creatorcontrib>Qi, ShuXia ; Liu, Sheng ; Han, Lei ; Wei, BingYan ; Li, Peng ; Zhong, JinZhan ; Guo, XuYue ; Zhao, JianLin</creatorcontrib><description>Spatially structured light field has attracted great attention due to its novel properties and application potential in numerous fields. Among them, the most striking one is the polarization-structured light, known as the vector beam. Here, using a periodic polarization-structured light, we propose a method to dynamically measure the holo-information of light fields, including the amplitude, phase, and polarization distributions, in three-dimensional (3D) space. The measurement system is composed of a Mach-Zender interferometer involving a liquid crystal polarized grating in the reference arm, which is simple, stable, and easy to operate. Featuring the single-shot measurement, this method supports observing the dynamic variation of object light fields. The accuracy, 3D polarimetry, and dynamic observation of this method are validated by measuring a calibrated quarter-wave plate, a vector vortex beam, a Poincaré beam, and a stressed polymethyl methacrylate sample.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-021-1686-9</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Astronomy ; Classical and Continuum Physics ; Electric fields ; Electron beams ; Electrons ; Information technology ; Light ; Liquid crystals ; Measurement ; Measurement techniques ; Measuring instruments ; Observations and Techniques ; Physics ; Physics and Astronomy ; Polarization ; Polymethyl methacrylate ; Polymethylmethacrylate ; Vortices ; Wave plates</subject><ispartof>Science China. Physics, mechanics &amp; astronomy, 2021-06, Vol.64 (6), p.264211, Article 264211</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-350165e074ded7e8430b18bb2835e4ec9c9767d10e2e6684e13e837ce09be78e3</citedby><cites>FETCH-LOGICAL-c355t-350165e074ded7e8430b18bb2835e4ec9c9767d10e2e6684e13e837ce09be78e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11433-021-1686-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11433-021-1686-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Qi, ShuXia</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><creatorcontrib>Han, Lei</creatorcontrib><creatorcontrib>Wei, BingYan</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Zhong, JinZhan</creatorcontrib><creatorcontrib>Guo, XuYue</creatorcontrib><creatorcontrib>Zhao, JianLin</creatorcontrib><title>Dynamically measuring the holo-information of light fields in three-dimensional space using a periodic polarization-structured light</title><title>Science China. Physics, mechanics &amp; astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><description>Spatially structured light field has attracted great attention due to its novel properties and application potential in numerous fields. Among them, the most striking one is the polarization-structured light, known as the vector beam. Here, using a periodic polarization-structured light, we propose a method to dynamically measure the holo-information of light fields, including the amplitude, phase, and polarization distributions, in three-dimensional (3D) space. The measurement system is composed of a Mach-Zender interferometer involving a liquid crystal polarized grating in the reference arm, which is simple, stable, and easy to operate. Featuring the single-shot measurement, this method supports observing the dynamic variation of object light fields. The accuracy, 3D polarimetry, and dynamic observation of this method are validated by measuring a calibrated quarter-wave plate, a vector vortex beam, a Poincaré beam, and a stressed polymethyl methacrylate sample.</description><subject>Astronomy</subject><subject>Classical and Continuum Physics</subject><subject>Electric fields</subject><subject>Electron beams</subject><subject>Electrons</subject><subject>Information technology</subject><subject>Light</subject><subject>Liquid crystals</subject><subject>Measurement</subject><subject>Measurement techniques</subject><subject>Measuring instruments</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization</subject><subject>Polymethyl methacrylate</subject><subject>Polymethylmethacrylate</subject><subject>Vortices</subject><subject>Wave plates</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kU9P7CAUxRujiUbnA7gjcY1CofxZGvWpiYkbXROG3s5gaKnQLuat3wd_1Jq4kruAkPM7uTmnqi4puaaEyJtMKWcMk5piKpTA-qg6o0poTHUtj8tbSI4l4-q02uT8QcphmnDJz6p_94fB9t7ZEA6oB5vn5IcdmvaA9jFE7Icupt5OPg4odij43X5CnYfQZuSHoksAuPU9DLlIbEB5tA7QnBcXi0ZIPrbeoTEGm_zfLyOcpzS7aU7QroYX1UlnQ4bN931evf95eLt7wi-vj893ty_YsaaZMGsIFQ0QyVtoJSjOyJaq7bZWrAEOTjsthWwpgRqEUBwoA8WkA6K3IBWw8-pq9R1T_JwhT-YjzqlsnU2tqWrK1KyorlfVzgYwSwBTsq5MCyWoOEDny_-trEWjqWYLQFfApZhzgs6Myfc2HQwlZinIrAWZUpBZCjK6MPXK5HEJHNLPKr9D_wFNqJVJ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Qi, ShuXia</creator><creator>Liu, Sheng</creator><creator>Han, Lei</creator><creator>Wei, BingYan</creator><creator>Li, Peng</creator><creator>Zhong, JinZhan</creator><creator>Guo, XuYue</creator><creator>Zhao, JianLin</creator><general>Science China Press</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20210601</creationdate><title>Dynamically measuring the holo-information of light fields in three-dimensional space using a periodic polarization-structured light</title><author>Qi, ShuXia ; Liu, Sheng ; Han, Lei ; Wei, BingYan ; Li, Peng ; Zhong, JinZhan ; Guo, XuYue ; Zhao, JianLin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-350165e074ded7e8430b18bb2835e4ec9c9767d10e2e6684e13e837ce09be78e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy</topic><topic>Classical and Continuum Physics</topic><topic>Electric fields</topic><topic>Electron beams</topic><topic>Electrons</topic><topic>Information technology</topic><topic>Light</topic><topic>Liquid crystals</topic><topic>Measurement</topic><topic>Measurement techniques</topic><topic>Measuring instruments</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization</topic><topic>Polymethyl methacrylate</topic><topic>Polymethylmethacrylate</topic><topic>Vortices</topic><topic>Wave plates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, ShuXia</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><creatorcontrib>Han, Lei</creatorcontrib><creatorcontrib>Wei, BingYan</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Zhong, JinZhan</creatorcontrib><creatorcontrib>Guo, XuYue</creatorcontrib><creatorcontrib>Zhao, JianLin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, ShuXia</au><au>Liu, Sheng</au><au>Han, Lei</au><au>Wei, BingYan</au><au>Li, Peng</au><au>Zhong, JinZhan</au><au>Guo, XuYue</au><au>Zhao, JianLin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamically measuring the holo-information of light fields in three-dimensional space using a periodic polarization-structured light</atitle><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>64</volume><issue>6</issue><spage>264211</spage><pages>264211-</pages><artnum>264211</artnum><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>Spatially structured light field has attracted great attention due to its novel properties and application potential in numerous fields. Among them, the most striking one is the polarization-structured light, known as the vector beam. Here, using a periodic polarization-structured light, we propose a method to dynamically measure the holo-information of light fields, including the amplitude, phase, and polarization distributions, in three-dimensional (3D) space. The measurement system is composed of a Mach-Zender interferometer involving a liquid crystal polarized grating in the reference arm, which is simple, stable, and easy to operate. Featuring the single-shot measurement, this method supports observing the dynamic variation of object light fields. The accuracy, 3D polarimetry, and dynamic observation of this method are validated by measuring a calibrated quarter-wave plate, a vector vortex beam, a Poincaré beam, and a stressed polymethyl methacrylate sample.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11433-021-1686-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 1674-7348
ispartof Science China. Physics, mechanics & astronomy, 2021-06, Vol.64 (6), p.264211, Article 264211
issn 1674-7348
1869-1927
language eng
recordid cdi_proquest_journals_2918585823
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Astronomy
Classical and Continuum Physics
Electric fields
Electron beams
Electrons
Information technology
Light
Liquid crystals
Measurement
Measurement techniques
Measuring instruments
Observations and Techniques
Physics
Physics and Astronomy
Polarization
Polymethyl methacrylate
Polymethylmethacrylate
Vortices
Wave plates
title Dynamically measuring the holo-information of light fields in three-dimensional space using a periodic polarization-structured light
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamically%20measuring%20the%20holo-information%20of%20light%20fields%20in%20three-dimensional%20space%20using%20a%20periodic%20polarization-structured%20light&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Qi,%20ShuXia&rft.date=2021-06-01&rft.volume=64&rft.issue=6&rft.spage=264211&rft.pages=264211-&rft.artnum=264211&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-021-1686-9&rft_dat=%3Cgale_proqu%3EA726591933%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918585823&rft_id=info:pmid/&rft_galeid=A726591933&rfr_iscdi=true