A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials

In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2017-08, Vol.60 (8), p.35-44, Article 084611
Hauptverfasser: Zhang, XiaoLong, Zhong, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue 8
container_start_page 35
container_title Science China. Physics, mechanics & astronomy
container_volume 60
creator Zhang, XiaoLong
Zhong, Zheng
description In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.
doi_str_mv 10.1007/s11433-017-9044-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918585300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>672610606</cqvip_id><sourcerecordid>2918585300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-e490073fe2f0b662ccd2f7aaa0c28b155d4f305768ca3e5cad2f7ff075de8ae43</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVKUfwC2Cs8FvO8eq4iVV4gJXLNex25Qkbu0U1L_HUSq44YN37ZnZ0Q4A1xjdYYTkfcKYUQoRlrBEjMHyDEywEiXEJZHnuReSQUmZugSzlLYoH5qJkk3Ax7zoNy62oTp2pq1t4aNp3XeIn4UP8YRBu3H5do1JfabUXe-isX0dupQfxYDW1jTNsRh-v1zRmsyoTZOuwIXPxc1OdQreHx_eFs9w-fr0spgvoaUK9dCxMu9BvSMerYQg1lbES2MMskStMOcV8xRxKZQ11HFrBth7JHnllHGMTsHtOHcXw_7gUq-34RC7bKlJiRVXnOadpwCPLBtDStF5vYt1a-JRY6SHJPWYpM5J6iFJXWYNGTUpc7u1i3-T_xPdnIw2oVvvs-7XSUgiMBJI0B8zhYNP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918585300</pqid></control><display><type>article</type><title>A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, XiaoLong ; Zhong, Zheng</creator><creatorcontrib>Zhang, XiaoLong ; Zhong, Zheng</creatorcontrib><description>In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-017-9044-9</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Astronomy ; Chemical reactions ; Chemical speciation ; Classical and Continuum Physics ; Constitutive relationships ; Deformation ; Elastic deformation ; Entropy ; Free energy ; Heat exchange ; Imbibition ; Incompressibility ; Independent variables ; Isotropic material ; Observations and Techniques ; Physics ; Physics and Astronomy ; Species diffusion ; Stoichiometry ; Swelling ; Thermodynamics ; 亥姆霍兹自由能 ; 化学反应 ; 弹性固体 ; 机械变形 ; 框架 ; 活性物质 ; 热力学 ; 相互作用</subject><ispartof>Science China. Physics, mechanics &amp; astronomy, 2017-08, Vol.60 (8), p.35-44, Article 084611</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany 2017</rights><rights>Science China Press and Springer-Verlag GmbH Germany 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-e490073fe2f0b662ccd2f7aaa0c28b155d4f305768ca3e5cad2f7ff075de8ae43</citedby><cites>FETCH-LOGICAL-c380t-e490073fe2f0b662ccd2f7aaa0c28b155d4f305768ca3e5cad2f7ff075de8ae43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60109X/60109X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11433-017-9044-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11433-017-9044-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, XiaoLong</creatorcontrib><creatorcontrib>Zhong, Zheng</creatorcontrib><title>A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials</title><title>Science China. Physics, mechanics &amp; astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><addtitle>SCIENCE CHINA Physics, Mechanics & Astronomy</addtitle><description>In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.</description><subject>Astronomy</subject><subject>Chemical reactions</subject><subject>Chemical speciation</subject><subject>Classical and Continuum Physics</subject><subject>Constitutive relationships</subject><subject>Deformation</subject><subject>Elastic deformation</subject><subject>Entropy</subject><subject>Free energy</subject><subject>Heat exchange</subject><subject>Imbibition</subject><subject>Incompressibility</subject><subject>Independent variables</subject><subject>Isotropic material</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Species diffusion</subject><subject>Stoichiometry</subject><subject>Swelling</subject><subject>Thermodynamics</subject><subject>亥姆霍兹自由能</subject><subject>化学反应</subject><subject>弹性固体</subject><subject>机械变形</subject><subject>框架</subject><subject>活性物质</subject><subject>热力学</subject><subject>相互作用</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UMtOwzAQtBBIVKUfwC2Cs8FvO8eq4iVV4gJXLNex25Qkbu0U1L_HUSq44YN37ZnZ0Q4A1xjdYYTkfcKYUQoRlrBEjMHyDEywEiXEJZHnuReSQUmZugSzlLYoH5qJkk3Ax7zoNy62oTp2pq1t4aNp3XeIn4UP8YRBu3H5do1JfabUXe-isX0dupQfxYDW1jTNsRh-v1zRmsyoTZOuwIXPxc1OdQreHx_eFs9w-fr0spgvoaUK9dCxMu9BvSMerYQg1lbES2MMskStMOcV8xRxKZQ11HFrBth7JHnllHGMTsHtOHcXw_7gUq-34RC7bKlJiRVXnOadpwCPLBtDStF5vYt1a-JRY6SHJPWYpM5J6iFJXWYNGTUpc7u1i3-T_xPdnIw2oVvvs-7XSUgiMBJI0B8zhYNP</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Zhang, XiaoLong</creator><creator>Zhong, Zheng</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20170801</creationdate><title>A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials</title><author>Zhang, XiaoLong ; Zhong, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-e490073fe2f0b662ccd2f7aaa0c28b155d4f305768ca3e5cad2f7ff075de8ae43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astronomy</topic><topic>Chemical reactions</topic><topic>Chemical speciation</topic><topic>Classical and Continuum Physics</topic><topic>Constitutive relationships</topic><topic>Deformation</topic><topic>Elastic deformation</topic><topic>Entropy</topic><topic>Free energy</topic><topic>Heat exchange</topic><topic>Imbibition</topic><topic>Incompressibility</topic><topic>Independent variables</topic><topic>Isotropic material</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Species diffusion</topic><topic>Stoichiometry</topic><topic>Swelling</topic><topic>Thermodynamics</topic><topic>亥姆霍兹自由能</topic><topic>化学反应</topic><topic>弹性固体</topic><topic>机械变形</topic><topic>框架</topic><topic>活性物质</topic><topic>热力学</topic><topic>相互作用</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, XiaoLong</creatorcontrib><creatorcontrib>Zhong, Zheng</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, XiaoLong</au><au>Zhong, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials</atitle><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><addtitle>SCIENCE CHINA Physics, Mechanics & Astronomy</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>60</volume><issue>8</issue><spage>35</spage><epage>44</epage><pages>35-44</pages><artnum>084611</artnum><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11433-017-9044-9</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7348
ispartof Science China. Physics, mechanics & astronomy, 2017-08, Vol.60 (8), p.35-44, Article 084611
issn 1674-7348
1869-1927
language eng
recordid cdi_proquest_journals_2918585300
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Astronomy
Chemical reactions
Chemical speciation
Classical and Continuum Physics
Constitutive relationships
Deformation
Elastic deformation
Entropy
Free energy
Heat exchange
Imbibition
Incompressibility
Independent variables
Isotropic material
Observations and Techniques
Physics
Physics and Astronomy
Species diffusion
Stoichiometry
Swelling
Thermodynamics
亥姆霍兹自由能
化学反应
弹性固体
机械变形
框架
活性物质
热力学
相互作用
title A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thermodynamic%20framework%20for%20thermo-chemo-elastic%20interactions%20in%20chemically%20active%20materials&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Zhang,%20XiaoLong&rft.date=2017-08-01&rft.volume=60&rft.issue=8&rft.spage=35&rft.epage=44&rft.pages=35-44&rft.artnum=084611&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-017-9044-9&rft_dat=%3Cproquest_cross%3E2918585300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918585300&rft_id=info:pmid/&rft_cqvip_id=672610606&rfr_iscdi=true