An end-to-end based on semantic region guidance for infrared and visible image fusion

The goal of infrared and visible image fusion is to fuse the dominant regions in the images of the two modalities to generate high-quality fused image. However, existing methods still suffer from some shortcomings, such as lack of effective supervision information, slow computation due to complex fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2024-02, Vol.18 (1), p.295-303
Hauptverfasser: Han, Guijin, Zhang, Xinyuan, Huang, Ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 303
container_issue 1
container_start_page 295
container_title Signal, image and video processing
container_volume 18
creator Han, Guijin
Zhang, Xinyuan
Huang, Ya
description The goal of infrared and visible image fusion is to fuse the dominant regions in the images of the two modalities to generate high-quality fused image. However, existing methods still suffer from some shortcomings, such as lack of effective supervision information, slow computation due to complex fusion rules, and difficult convergence of GAN-based models. In this paper, we propose an end-to-end fusion method based on semantic region guidance. Our model contains three basic parts: preprocessing module, image generation module, and semantic guided information quantity discrimination module (IQDM). Firstly, we input the infrared and visible images into the preprocessing module to achieve the preliminary fusion of the images. Subsequently, the features are fed into the image generation module for high-quality fused image generation. Finally, the training of the model was supervised by the semantic guided IQDM. In particular, we improve the image generation module based on the diffusion model, which effectively avoids the design of complex fusion rules and makes it more suitable for image fusion tasks. We conduct objective and subjective experiments on four public datasets. Compared with existing methods, the fusion results of the proposed method have better objective metrics, contain more detailed information.
doi_str_mv 10.1007/s11760-023-02748-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918559875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918559875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-558271c5d75c3f61fa7c83b346f6394c47947e517ed76f82bac760a2863844bf3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWGpfwFXAdTSXySSzLMUbFNzYdchkkiGlzdSkI9in9-iI7gyEc0K-_1x-hK4ZvWWUqrvCmKopoVzAVZUmpzM0Y7oWhCnGzn9zKi7RopQthSO40rWeoc0yYZ86chwIBNza4js8JFz83qZjdDj7PsK7H2Nnk_M4DBnHFLLNAFqQvMcS253HcW97-B4L4FfoIthd8YufOEebh_vX1RNZvzw-r5Zr4riiRyKl5oo52SnpRKhZsMpp0YqqDrVoKlepplJeMuU7VQfNW-tgUcthHV1VbRBzdDPVPeThbfTlaLbDmBO0NLxhWspGKwkUnyiXh1KyD-aQYdr8YRg1Xw6ayUEDDppvB80JRGISFYBT7_Nf6X9Un8KTcuk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918559875</pqid></control><display><type>article</type><title>An end-to-end based on semantic region guidance for infrared and visible image fusion</title><source>Springer Nature - Complete Springer Journals</source><creator>Han, Guijin ; Zhang, Xinyuan ; Huang, Ya</creator><creatorcontrib>Han, Guijin ; Zhang, Xinyuan ; Huang, Ya</creatorcontrib><description>The goal of infrared and visible image fusion is to fuse the dominant regions in the images of the two modalities to generate high-quality fused image. However, existing methods still suffer from some shortcomings, such as lack of effective supervision information, slow computation due to complex fusion rules, and difficult convergence of GAN-based models. In this paper, we propose an end-to-end fusion method based on semantic region guidance. Our model contains three basic parts: preprocessing module, image generation module, and semantic guided information quantity discrimination module (IQDM). Firstly, we input the infrared and visible images into the preprocessing module to achieve the preliminary fusion of the images. Subsequently, the features are fed into the image generation module for high-quality fused image generation. Finally, the training of the model was supervised by the semantic guided IQDM. In particular, we improve the image generation module based on the diffusion model, which effectively avoids the design of complex fusion rules and makes it more suitable for image fusion tasks. We conduct objective and subjective experiments on four public datasets. Compared with existing methods, the fusion results of the proposed method have better objective metrics, contain more detailed information.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-023-02748-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Imaging ; Computer Science ; Computer vision ; Image processing ; Image Processing and Computer Vision ; Image quality ; Infrared imagery ; Modules ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Preprocessing ; Semantics ; Signal,Image and Speech Processing ; Task complexity ; Vision</subject><ispartof>Signal, image and video processing, 2024-02, Vol.18 (1), p.295-303</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-558271c5d75c3f61fa7c83b346f6394c47947e517ed76f82bac760a2863844bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-023-02748-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-023-02748-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Han, Guijin</creatorcontrib><creatorcontrib>Zhang, Xinyuan</creatorcontrib><creatorcontrib>Huang, Ya</creatorcontrib><title>An end-to-end based on semantic region guidance for infrared and visible image fusion</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>The goal of infrared and visible image fusion is to fuse the dominant regions in the images of the two modalities to generate high-quality fused image. However, existing methods still suffer from some shortcomings, such as lack of effective supervision information, slow computation due to complex fusion rules, and difficult convergence of GAN-based models. In this paper, we propose an end-to-end fusion method based on semantic region guidance. Our model contains three basic parts: preprocessing module, image generation module, and semantic guided information quantity discrimination module (IQDM). Firstly, we input the infrared and visible images into the preprocessing module to achieve the preliminary fusion of the images. Subsequently, the features are fed into the image generation module for high-quality fused image generation. Finally, the training of the model was supervised by the semantic guided IQDM. In particular, we improve the image generation module based on the diffusion model, which effectively avoids the design of complex fusion rules and makes it more suitable for image fusion tasks. We conduct objective and subjective experiments on four public datasets. Compared with existing methods, the fusion results of the proposed method have better objective metrics, contain more detailed information.</description><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Image processing</subject><subject>Image Processing and Computer Vision</subject><subject>Image quality</subject><subject>Infrared imagery</subject><subject>Modules</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Preprocessing</subject><subject>Semantics</subject><subject>Signal,Image and Speech Processing</subject><subject>Task complexity</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWGpfwFXAdTSXySSzLMUbFNzYdchkkiGlzdSkI9in9-iI7gyEc0K-_1x-hK4ZvWWUqrvCmKopoVzAVZUmpzM0Y7oWhCnGzn9zKi7RopQthSO40rWeoc0yYZ86chwIBNza4js8JFz83qZjdDj7PsK7H2Nnk_M4DBnHFLLNAFqQvMcS253HcW97-B4L4FfoIthd8YufOEebh_vX1RNZvzw-r5Zr4riiRyKl5oo52SnpRKhZsMpp0YqqDrVoKlepplJeMuU7VQfNW-tgUcthHV1VbRBzdDPVPeThbfTlaLbDmBO0NLxhWspGKwkUnyiXh1KyD-aQYdr8YRg1Xw6ayUEDDppvB80JRGISFYBT7_Nf6X9Un8KTcuk</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Han, Guijin</creator><creator>Zhang, Xinyuan</creator><creator>Huang, Ya</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>An end-to-end based on semantic region guidance for infrared and visible image fusion</title><author>Han, Guijin ; Zhang, Xinyuan ; Huang, Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-558271c5d75c3f61fa7c83b346f6394c47947e517ed76f82bac760a2863844bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Image processing</topic><topic>Image Processing and Computer Vision</topic><topic>Image quality</topic><topic>Infrared imagery</topic><topic>Modules</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Preprocessing</topic><topic>Semantics</topic><topic>Signal,Image and Speech Processing</topic><topic>Task complexity</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Guijin</creatorcontrib><creatorcontrib>Zhang, Xinyuan</creatorcontrib><creatorcontrib>Huang, Ya</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Guijin</au><au>Zhang, Xinyuan</au><au>Huang, Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An end-to-end based on semantic region guidance for infrared and visible image fusion</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>18</volume><issue>1</issue><spage>295</spage><epage>303</epage><pages>295-303</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>The goal of infrared and visible image fusion is to fuse the dominant regions in the images of the two modalities to generate high-quality fused image. However, existing methods still suffer from some shortcomings, such as lack of effective supervision information, slow computation due to complex fusion rules, and difficult convergence of GAN-based models. In this paper, we propose an end-to-end fusion method based on semantic region guidance. Our model contains three basic parts: preprocessing module, image generation module, and semantic guided information quantity discrimination module (IQDM). Firstly, we input the infrared and visible images into the preprocessing module to achieve the preliminary fusion of the images. Subsequently, the features are fed into the image generation module for high-quality fused image generation. Finally, the training of the model was supervised by the semantic guided IQDM. In particular, we improve the image generation module based on the diffusion model, which effectively avoids the design of complex fusion rules and makes it more suitable for image fusion tasks. We conduct objective and subjective experiments on four public datasets. Compared with existing methods, the fusion results of the proposed method have better objective metrics, contain more detailed information.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-023-02748-z</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2024-02, Vol.18 (1), p.295-303
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_2918559875
source Springer Nature - Complete Springer Journals
subjects Computer Imaging
Computer Science
Computer vision
Image processing
Image Processing and Computer Vision
Image quality
Infrared imagery
Modules
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Preprocessing
Semantics
Signal,Image and Speech Processing
Task complexity
Vision
title An end-to-end based on semantic region guidance for infrared and visible image fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A17%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20end-to-end%20based%20on%20semantic%20region%20guidance%20for%20infrared%20and%20visible%20image%20fusion&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Han,%20Guijin&rft.date=2024-02-01&rft.volume=18&rft.issue=1&rft.spage=295&rft.epage=303&rft.pages=295-303&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-023-02748-z&rft_dat=%3Cproquest_cross%3E2918559875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918559875&rft_id=info:pmid/&rfr_iscdi=true