SPCNet: a strip pyramid ConvNeXt network for detection of road surface defects

Road surface defect detection plays an important role in the construction and maintenance of roads. However, the irregularity of road surface defects and the complexity of the background make the extraction of road surface defects very difficult. It is a challenge to extract the road surface defects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2024-02, Vol.18 (1), p.37-45
Hauptverfasser: Zhou, Ziang, Zhao, Wensong, Li, Jun, Song, Kechen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue 1
container_start_page 37
container_title Signal, image and video processing
container_volume 18
creator Zhou, Ziang
Zhao, Wensong
Li, Jun
Song, Kechen
description Road surface defect detection plays an important role in the construction and maintenance of roads. However, the irregularity of road surface defects and the complexity of the background make the extraction of road surface defects very difficult. It is a challenge to extract the road surface defects accurately. To cope with this challenge, we introduce the theory of image segmentation in deep learning. However, existing deep learning networks suffer from insufficient segmentation accuracy, low model robustness, and a lack of generalization ability. Consequently, we propose a novel deep learning network named Strip Pyramid ConvNeXt Network for detecting road surface defects. Firstly, we introduced ConvNeXt as the encoder to ensure the segmentation accuracy of the model. Furthermore, we designed a strip pyramid pooling module with excellent edge detail extraction capability and a multi-feature fusion module. We also created a cementation fissure dataset (CE dataset) to test the accuracy of the model and verify the generalization capability and robustness of the model. Finally, we compared our model with ten advanced segmentation networks in recent years on CRACK500 dataset, GAPs384 dataset, and cementation fissure dataset (CE dataset), and our model outperforms others on four metrics.
doi_str_mv 10.1007/s11760-023-02698-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918549338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918549338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-429592b5d63d5d04784763366fb03be445a9895768f4ed8e644d271c41bc53783</originalsourceid><addsrcrecordid>eNp9kFtLxDAQhYMouKz7B3wK-FxNmrtvUrzBUgUVfAttk0hXt6lJVtl_b9aKvjkwzMCccwY-AI4xOsUIibOIseCoQCXJzZUs-B6YYclJgQXG-787IodgEeMK5SKlkFzOQP1wX9U2ncMGxhT6EY7b0Kx7Ays_fNT2OcHBpk8fXqHzARqbbJd6P0DvYPCNgXETXNPZfHH5Eo_AgWveol38zDl4urp8rG6K5d31bXWxLDqCVSpoqZgqW2Y4McwgKiQVnBDOXYtIaylljZKKCS4dtUZaTqkpBe4objtGhCRzcDLljsG_b2xMeuU3YcgvdamwZFQRslOVk6oLPsZgnR5Dv27CVmOkd-j0hE5ndPobnebZRCZTzOLhxYa_6H9cX1B8bxE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918549338</pqid></control><display><type>article</type><title>SPCNet: a strip pyramid ConvNeXt network for detection of road surface defects</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhou, Ziang ; Zhao, Wensong ; Li, Jun ; Song, Kechen</creator><creatorcontrib>Zhou, Ziang ; Zhao, Wensong ; Li, Jun ; Song, Kechen</creatorcontrib><description>Road surface defect detection plays an important role in the construction and maintenance of roads. However, the irregularity of road surface defects and the complexity of the background make the extraction of road surface defects very difficult. It is a challenge to extract the road surface defects accurately. To cope with this challenge, we introduce the theory of image segmentation in deep learning. However, existing deep learning networks suffer from insufficient segmentation accuracy, low model robustness, and a lack of generalization ability. Consequently, we propose a novel deep learning network named Strip Pyramid ConvNeXt Network for detecting road surface defects. Firstly, we introduced ConvNeXt as the encoder to ensure the segmentation accuracy of the model. Furthermore, we designed a strip pyramid pooling module with excellent edge detail extraction capability and a multi-feature fusion module. We also created a cementation fissure dataset (CE dataset) to test the accuracy of the model and verify the generalization capability and robustness of the model. Finally, we compared our model with ten advanced segmentation networks in recent years on CRACK500 dataset, GAPs384 dataset, and cementation fissure dataset (CE dataset), and our model outperforms others on four metrics.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-023-02698-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Cementation ; Computer Imaging ; Computer Science ; Datasets ; Deep learning ; Image Processing and Computer Vision ; Image segmentation ; Model accuracy ; Modules ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Road maintenance ; Road surface ; Roads &amp; highways ; Robustness ; Signal,Image and Speech Processing ; Strip ; Surface defects ; Vision</subject><ispartof>Signal, image and video processing, 2024-02, Vol.18 (1), p.37-45</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-429592b5d63d5d04784763366fb03be445a9895768f4ed8e644d271c41bc53783</citedby><cites>FETCH-LOGICAL-c319t-429592b5d63d5d04784763366fb03be445a9895768f4ed8e644d271c41bc53783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-023-02698-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-023-02698-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zhou, Ziang</creatorcontrib><creatorcontrib>Zhao, Wensong</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Song, Kechen</creatorcontrib><title>SPCNet: a strip pyramid ConvNeXt network for detection of road surface defects</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Road surface defect detection plays an important role in the construction and maintenance of roads. However, the irregularity of road surface defects and the complexity of the background make the extraction of road surface defects very difficult. It is a challenge to extract the road surface defects accurately. To cope with this challenge, we introduce the theory of image segmentation in deep learning. However, existing deep learning networks suffer from insufficient segmentation accuracy, low model robustness, and a lack of generalization ability. Consequently, we propose a novel deep learning network named Strip Pyramid ConvNeXt Network for detecting road surface defects. Firstly, we introduced ConvNeXt as the encoder to ensure the segmentation accuracy of the model. Furthermore, we designed a strip pyramid pooling module with excellent edge detail extraction capability and a multi-feature fusion module. We also created a cementation fissure dataset (CE dataset) to test the accuracy of the model and verify the generalization capability and robustness of the model. Finally, we compared our model with ten advanced segmentation networks in recent years on CRACK500 dataset, GAPs384 dataset, and cementation fissure dataset (CE dataset), and our model outperforms others on four metrics.</description><subject>Accuracy</subject><subject>Cementation</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Image Processing and Computer Vision</subject><subject>Image segmentation</subject><subject>Model accuracy</subject><subject>Modules</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Road maintenance</subject><subject>Road surface</subject><subject>Roads &amp; highways</subject><subject>Robustness</subject><subject>Signal,Image and Speech Processing</subject><subject>Strip</subject><subject>Surface defects</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLxDAQhYMouKz7B3wK-FxNmrtvUrzBUgUVfAttk0hXt6lJVtl_b9aKvjkwzMCccwY-AI4xOsUIibOIseCoQCXJzZUs-B6YYclJgQXG-787IodgEeMK5SKlkFzOQP1wX9U2ncMGxhT6EY7b0Kx7Ays_fNT2OcHBpk8fXqHzARqbbJd6P0DvYPCNgXETXNPZfHH5Eo_AgWveol38zDl4urp8rG6K5d31bXWxLDqCVSpoqZgqW2Y4McwgKiQVnBDOXYtIaylljZKKCS4dtUZaTqkpBe4objtGhCRzcDLljsG_b2xMeuU3YcgvdamwZFQRslOVk6oLPsZgnR5Dv27CVmOkd-j0hE5ndPobnebZRCZTzOLhxYa_6H9cX1B8bxE</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Zhou, Ziang</creator><creator>Zhao, Wensong</creator><creator>Li, Jun</creator><creator>Song, Kechen</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>SPCNet: a strip pyramid ConvNeXt network for detection of road surface defects</title><author>Zhou, Ziang ; Zhao, Wensong ; Li, Jun ; Song, Kechen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-429592b5d63d5d04784763366fb03be445a9895768f4ed8e644d271c41bc53783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Cementation</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Image Processing and Computer Vision</topic><topic>Image segmentation</topic><topic>Model accuracy</topic><topic>Modules</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Road maintenance</topic><topic>Road surface</topic><topic>Roads &amp; highways</topic><topic>Robustness</topic><topic>Signal,Image and Speech Processing</topic><topic>Strip</topic><topic>Surface defects</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ziang</creatorcontrib><creatorcontrib>Zhao, Wensong</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Song, Kechen</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ziang</au><au>Zhao, Wensong</au><au>Li, Jun</au><au>Song, Kechen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPCNet: a strip pyramid ConvNeXt network for detection of road surface defects</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>18</volume><issue>1</issue><spage>37</spage><epage>45</epage><pages>37-45</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Road surface defect detection plays an important role in the construction and maintenance of roads. However, the irregularity of road surface defects and the complexity of the background make the extraction of road surface defects very difficult. It is a challenge to extract the road surface defects accurately. To cope with this challenge, we introduce the theory of image segmentation in deep learning. However, existing deep learning networks suffer from insufficient segmentation accuracy, low model robustness, and a lack of generalization ability. Consequently, we propose a novel deep learning network named Strip Pyramid ConvNeXt Network for detecting road surface defects. Firstly, we introduced ConvNeXt as the encoder to ensure the segmentation accuracy of the model. Furthermore, we designed a strip pyramid pooling module with excellent edge detail extraction capability and a multi-feature fusion module. We also created a cementation fissure dataset (CE dataset) to test the accuracy of the model and verify the generalization capability and robustness of the model. Finally, we compared our model with ten advanced segmentation networks in recent years on CRACK500 dataset, GAPs384 dataset, and cementation fissure dataset (CE dataset), and our model outperforms others on four metrics.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-023-02698-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2024-02, Vol.18 (1), p.37-45
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_2918549338
source Springer Nature - Complete Springer Journals
subjects Accuracy
Cementation
Computer Imaging
Computer Science
Datasets
Deep learning
Image Processing and Computer Vision
Image segmentation
Model accuracy
Modules
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Road maintenance
Road surface
Roads & highways
Robustness
Signal,Image and Speech Processing
Strip
Surface defects
Vision
title SPCNet: a strip pyramid ConvNeXt network for detection of road surface defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPCNet:%20a%20strip%20pyramid%20ConvNeXt%20network%20for%20detection%20of%20road%20surface%20defects&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Zhou,%20Ziang&rft.date=2024-02-01&rft.volume=18&rft.issue=1&rft.spage=37&rft.epage=45&rft.pages=37-45&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-023-02698-6&rft_dat=%3Cproquest_cross%3E2918549338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918549338&rft_id=info:pmid/&rfr_iscdi=true