SPCNet: a strip pyramid ConvNeXt network for detection of road surface defects
Road surface defect detection plays an important role in the construction and maintenance of roads. However, the irregularity of road surface defects and the complexity of the background make the extraction of road surface defects very difficult. It is a challenge to extract the road surface defects...
Gespeichert in:
Veröffentlicht in: | Signal, image and video processing image and video processing, 2024-02, Vol.18 (1), p.37-45 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | 1 |
container_start_page | 37 |
container_title | Signal, image and video processing |
container_volume | 18 |
creator | Zhou, Ziang Zhao, Wensong Li, Jun Song, Kechen |
description | Road surface defect detection plays an important role in the construction and maintenance of roads. However, the irregularity of road surface defects and the complexity of the background make the extraction of road surface defects very difficult. It is a challenge to extract the road surface defects accurately. To cope with this challenge, we introduce the theory of image segmentation in deep learning. However, existing deep learning networks suffer from insufficient segmentation accuracy, low model robustness, and a lack of generalization ability. Consequently, we propose a novel deep learning network named Strip Pyramid ConvNeXt Network for detecting road surface defects. Firstly, we introduced ConvNeXt as the encoder to ensure the segmentation accuracy of the model. Furthermore, we designed a strip pyramid pooling module with excellent edge detail extraction capability and a multi-feature fusion module. We also created a cementation fissure dataset (CE dataset) to test the accuracy of the model and verify the generalization capability and robustness of the model. Finally, we compared our model with ten advanced segmentation networks in recent years on CRACK500 dataset, GAPs384 dataset, and cementation fissure dataset (CE dataset), and our model outperforms others on four metrics. |
doi_str_mv | 10.1007/s11760-023-02698-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918549338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918549338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-429592b5d63d5d04784763366fb03be445a9895768f4ed8e644d271c41bc53783</originalsourceid><addsrcrecordid>eNp9kFtLxDAQhYMouKz7B3wK-FxNmrtvUrzBUgUVfAttk0hXt6lJVtl_b9aKvjkwzMCccwY-AI4xOsUIibOIseCoQCXJzZUs-B6YYclJgQXG-787IodgEeMK5SKlkFzOQP1wX9U2ncMGxhT6EY7b0Kx7Ays_fNT2OcHBpk8fXqHzARqbbJd6P0DvYPCNgXETXNPZfHH5Eo_AgWveol38zDl4urp8rG6K5d31bXWxLDqCVSpoqZgqW2Y4McwgKiQVnBDOXYtIaylljZKKCS4dtUZaTqkpBe4objtGhCRzcDLljsG_b2xMeuU3YcgvdamwZFQRslOVk6oLPsZgnR5Dv27CVmOkd-j0hE5ndPobnebZRCZTzOLhxYa_6H9cX1B8bxE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918549338</pqid></control><display><type>article</type><title>SPCNet: a strip pyramid ConvNeXt network for detection of road surface defects</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhou, Ziang ; Zhao, Wensong ; Li, Jun ; Song, Kechen</creator><creatorcontrib>Zhou, Ziang ; Zhao, Wensong ; Li, Jun ; Song, Kechen</creatorcontrib><description>Road surface defect detection plays an important role in the construction and maintenance of roads. However, the irregularity of road surface defects and the complexity of the background make the extraction of road surface defects very difficult. It is a challenge to extract the road surface defects accurately. To cope with this challenge, we introduce the theory of image segmentation in deep learning. However, existing deep learning networks suffer from insufficient segmentation accuracy, low model robustness, and a lack of generalization ability. Consequently, we propose a novel deep learning network named Strip Pyramid ConvNeXt Network for detecting road surface defects. Firstly, we introduced ConvNeXt as the encoder to ensure the segmentation accuracy of the model. Furthermore, we designed a strip pyramid pooling module with excellent edge detail extraction capability and a multi-feature fusion module. We also created a cementation fissure dataset (CE dataset) to test the accuracy of the model and verify the generalization capability and robustness of the model. Finally, we compared our model with ten advanced segmentation networks in recent years on CRACK500 dataset, GAPs384 dataset, and cementation fissure dataset (CE dataset), and our model outperforms others on four metrics.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-023-02698-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Cementation ; Computer Imaging ; Computer Science ; Datasets ; Deep learning ; Image Processing and Computer Vision ; Image segmentation ; Model accuracy ; Modules ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Road maintenance ; Road surface ; Roads & highways ; Robustness ; Signal,Image and Speech Processing ; Strip ; Surface defects ; Vision</subject><ispartof>Signal, image and video processing, 2024-02, Vol.18 (1), p.37-45</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-429592b5d63d5d04784763366fb03be445a9895768f4ed8e644d271c41bc53783</citedby><cites>FETCH-LOGICAL-c319t-429592b5d63d5d04784763366fb03be445a9895768f4ed8e644d271c41bc53783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-023-02698-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-023-02698-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zhou, Ziang</creatorcontrib><creatorcontrib>Zhao, Wensong</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Song, Kechen</creatorcontrib><title>SPCNet: a strip pyramid ConvNeXt network for detection of road surface defects</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Road surface defect detection plays an important role in the construction and maintenance of roads. However, the irregularity of road surface defects and the complexity of the background make the extraction of road surface defects very difficult. It is a challenge to extract the road surface defects accurately. To cope with this challenge, we introduce the theory of image segmentation in deep learning. However, existing deep learning networks suffer from insufficient segmentation accuracy, low model robustness, and a lack of generalization ability. Consequently, we propose a novel deep learning network named Strip Pyramid ConvNeXt Network for detecting road surface defects. Firstly, we introduced ConvNeXt as the encoder to ensure the segmentation accuracy of the model. Furthermore, we designed a strip pyramid pooling module with excellent edge detail extraction capability and a multi-feature fusion module. We also created a cementation fissure dataset (CE dataset) to test the accuracy of the model and verify the generalization capability and robustness of the model. Finally, we compared our model with ten advanced segmentation networks in recent years on CRACK500 dataset, GAPs384 dataset, and cementation fissure dataset (CE dataset), and our model outperforms others on four metrics.</description><subject>Accuracy</subject><subject>Cementation</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Image Processing and Computer Vision</subject><subject>Image segmentation</subject><subject>Model accuracy</subject><subject>Modules</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Road maintenance</subject><subject>Road surface</subject><subject>Roads & highways</subject><subject>Robustness</subject><subject>Signal,Image and Speech Processing</subject><subject>Strip</subject><subject>Surface defects</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLxDAQhYMouKz7B3wK-FxNmrtvUrzBUgUVfAttk0hXt6lJVtl_b9aKvjkwzMCccwY-AI4xOsUIibOIseCoQCXJzZUs-B6YYclJgQXG-787IodgEeMK5SKlkFzOQP1wX9U2ncMGxhT6EY7b0Kx7Ays_fNT2OcHBpk8fXqHzARqbbJd6P0DvYPCNgXETXNPZfHH5Eo_AgWveol38zDl4urp8rG6K5d31bXWxLDqCVSpoqZgqW2Y4McwgKiQVnBDOXYtIaylljZKKCS4dtUZaTqkpBe4objtGhCRzcDLljsG_b2xMeuU3YcgvdamwZFQRslOVk6oLPsZgnR5Dv27CVmOkd-j0hE5ndPobnebZRCZTzOLhxYa_6H9cX1B8bxE</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Zhou, Ziang</creator><creator>Zhao, Wensong</creator><creator>Li, Jun</creator><creator>Song, Kechen</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>SPCNet: a strip pyramid ConvNeXt network for detection of road surface defects</title><author>Zhou, Ziang ; Zhao, Wensong ; Li, Jun ; Song, Kechen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-429592b5d63d5d04784763366fb03be445a9895768f4ed8e644d271c41bc53783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Cementation</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Image Processing and Computer Vision</topic><topic>Image segmentation</topic><topic>Model accuracy</topic><topic>Modules</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Road maintenance</topic><topic>Road surface</topic><topic>Roads & highways</topic><topic>Robustness</topic><topic>Signal,Image and Speech Processing</topic><topic>Strip</topic><topic>Surface defects</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ziang</creatorcontrib><creatorcontrib>Zhao, Wensong</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Song, Kechen</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ziang</au><au>Zhao, Wensong</au><au>Li, Jun</au><au>Song, Kechen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPCNet: a strip pyramid ConvNeXt network for detection of road surface defects</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>18</volume><issue>1</issue><spage>37</spage><epage>45</epage><pages>37-45</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Road surface defect detection plays an important role in the construction and maintenance of roads. However, the irregularity of road surface defects and the complexity of the background make the extraction of road surface defects very difficult. It is a challenge to extract the road surface defects accurately. To cope with this challenge, we introduce the theory of image segmentation in deep learning. However, existing deep learning networks suffer from insufficient segmentation accuracy, low model robustness, and a lack of generalization ability. Consequently, we propose a novel deep learning network named Strip Pyramid ConvNeXt Network for detecting road surface defects. Firstly, we introduced ConvNeXt as the encoder to ensure the segmentation accuracy of the model. Furthermore, we designed a strip pyramid pooling module with excellent edge detail extraction capability and a multi-feature fusion module. We also created a cementation fissure dataset (CE dataset) to test the accuracy of the model and verify the generalization capability and robustness of the model. Finally, we compared our model with ten advanced segmentation networks in recent years on CRACK500 dataset, GAPs384 dataset, and cementation fissure dataset (CE dataset), and our model outperforms others on four metrics.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-023-02698-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2024-02, Vol.18 (1), p.37-45 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_proquest_journals_2918549338 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Cementation Computer Imaging Computer Science Datasets Deep learning Image Processing and Computer Vision Image segmentation Model accuracy Modules Multimedia Information Systems Original Paper Pattern Recognition and Graphics Road maintenance Road surface Roads & highways Robustness Signal,Image and Speech Processing Strip Surface defects Vision |
title | SPCNet: a strip pyramid ConvNeXt network for detection of road surface defects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPCNet:%20a%20strip%20pyramid%20ConvNeXt%20network%20for%20detection%20of%20road%20surface%20defects&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Zhou,%20Ziang&rft.date=2024-02-01&rft.volume=18&rft.issue=1&rft.spage=37&rft.epage=45&rft.pages=37-45&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-023-02698-6&rft_dat=%3Cproquest_cross%3E2918549338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918549338&rft_id=info:pmid/&rfr_iscdi=true |