Value locality based storage compression memory architecture for ECG sensor node

This paper proposes a value compression memory architecture for QRS detection in ultra-low-power ECG sensor nodes. Based on the exploration of value spatial locality in the most critical preprocessing stage of the ECG algorithm, a cost efficient compression strategy, which reorganizes several adjace...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Information sciences 2016-04, Vol.59 (4), p.41-51, Article 042401
Hauptverfasser: Zhao, Chaojun, Chen, Chen, Chen, Zhijian, Meng, Jianyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 4
container_start_page 41
container_title Science China. Information sciences
container_volume 59
creator Zhao, Chaojun
Chen, Chen
Chen, Zhijian
Meng, Jianyi
description This paper proposes a value compression memory architecture for QRS detection in ultra-low-power ECG sensor nodes. Based on the exploration of value spatial locality in the most critical preprocessing stage of the ECG algorithm, a cost efficient compression strategy, which reorganizes several adjacent sample values into a base value with several displacements, is proposed. The displacements will be half or quarter scale quantifications; as a result, the storage size is reduced. The memory architecture saves memory space by storing compressed data with value spatial locality into a compressed memory section and by using a small, uncompressed memory section as backup to store the uncompressed data when a value spatial locality miss occurs. Furthermore,a low-power accession strategy is proposed to achieve low-power accession. An embodiment of the proposed memory architecture has been evaluated using the MIT/BIH database, the proposed memory architecture and a low-power accession strategy to achieve memory space savings of 32.5% and to achieve a 68.1% power reduction with a negligible performance reduction of 0.2%.
doi_str_mv 10.1007/s11432-015-5371-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918545977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>668258448</cqvip_id><sourcerecordid>2918545977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-b7257c1a1fc45e373eca4b43590228116ce7bcb3284823db1055819bbb4087893</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWGofwF3Q9WhOLpNkKaVWoaALFXchSdMbnUmbzCz69qa06M6zOf_iv8CH0C2QByBEPmYAzmhFQFSCSajgAg1A1boCDfqy6FrySjL2fY1GOW9IOcYIlWqA3r_stg94G73drrsDdjaHOc5dTHYZsI_NLoWc17HFTWhiOmCb_GrdBd_1KeBFTHgynuIc2lxkG-fhBl0t7DaH0fkP0efz5GP8Us3epq_jp1nlmYaucpIK6cHCwnMRmGTBW-44E5pQqgBqH6TzjlHFFWVzB0QIBdo5x4mSSrMhuj_17lLc9yF3ZhP71JZJQzUowYWWsrjg5PIp5pzCwuzSurHpYICYIztzYmcKO3NkZ6Bk6CmTi7ddhvTX_F_o7jy0iu1yX3K_S3WtqFCcK_YD8N172g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918545977</pqid></control><display><type>article</type><title>Value locality based storage compression memory architecture for ECG sensor node</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Zhao, Chaojun ; Chen, Chen ; Chen, Zhijian ; Meng, Jianyi</creator><creatorcontrib>Zhao, Chaojun ; Chen, Chen ; Chen, Zhijian ; Meng, Jianyi</creatorcontrib><description>This paper proposes a value compression memory architecture for QRS detection in ultra-low-power ECG sensor nodes. Based on the exploration of value spatial locality in the most critical preprocessing stage of the ECG algorithm, a cost efficient compression strategy, which reorganizes several adjacent sample values into a base value with several displacements, is proposed. The displacements will be half or quarter scale quantifications; as a result, the storage size is reduced. The memory architecture saves memory space by storing compressed data with value spatial locality into a compressed memory section and by using a small, uncompressed memory section as backup to store the uncompressed data when a value spatial locality miss occurs. Furthermore,a low-power accession strategy is proposed to achieve low-power accession. An embodiment of the proposed memory architecture has been evaluated using the MIT/BIH database, the proposed memory architecture and a low-power accession strategy to achieve memory space savings of 32.5% and to achieve a 68.1% power reduction with a negligible performance reduction of 0.2%.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-015-5371-1</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Algorithms ; Computer memory ; Computer Science ; Information Systems and Communication Service ; Research Paper ; Spatial data ; Storage ; 传感器节点 ; 压缩存储 ; 存储压缩 ; 存储结构 ; 心电图 ; 空间位置 ; 空间局部性 ; 超低功耗</subject><ispartof>Science China. Information sciences, 2016-04, Vol.59 (4), p.41-51, Article 042401</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-b7257c1a1fc45e373eca4b43590228116ce7bcb3284823db1055819bbb4087893</citedby><cites>FETCH-LOGICAL-c391t-b7257c1a1fc45e373eca4b43590228116ce7bcb3284823db1055819bbb4087893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84009A/84009A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11432-015-5371-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918545977?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Zhao, Chaojun</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Chen, Zhijian</creatorcontrib><creatorcontrib>Meng, Jianyi</creatorcontrib><title>Value locality based storage compression memory architecture for ECG sensor node</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><description>This paper proposes a value compression memory architecture for QRS detection in ultra-low-power ECG sensor nodes. Based on the exploration of value spatial locality in the most critical preprocessing stage of the ECG algorithm, a cost efficient compression strategy, which reorganizes several adjacent sample values into a base value with several displacements, is proposed. The displacements will be half or quarter scale quantifications; as a result, the storage size is reduced. The memory architecture saves memory space by storing compressed data with value spatial locality into a compressed memory section and by using a small, uncompressed memory section as backup to store the uncompressed data when a value spatial locality miss occurs. Furthermore,a low-power accession strategy is proposed to achieve low-power accession. An embodiment of the proposed memory architecture has been evaluated using the MIT/BIH database, the proposed memory architecture and a low-power accession strategy to achieve memory space savings of 32.5% and to achieve a 68.1% power reduction with a negligible performance reduction of 0.2%.</description><subject>Algorithms</subject><subject>Computer memory</subject><subject>Computer Science</subject><subject>Information Systems and Communication Service</subject><subject>Research Paper</subject><subject>Spatial data</subject><subject>Storage</subject><subject>传感器节点</subject><subject>压缩存储</subject><subject>存储压缩</subject><subject>存储结构</subject><subject>心电图</subject><subject>空间位置</subject><subject>空间局部性</subject><subject>超低功耗</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWGofwF3Q9WhOLpNkKaVWoaALFXchSdMbnUmbzCz69qa06M6zOf_iv8CH0C2QByBEPmYAzmhFQFSCSajgAg1A1boCDfqy6FrySjL2fY1GOW9IOcYIlWqA3r_stg94G73drrsDdjaHOc5dTHYZsI_NLoWc17HFTWhiOmCb_GrdBd_1KeBFTHgynuIc2lxkG-fhBl0t7DaH0fkP0efz5GP8Us3epq_jp1nlmYaucpIK6cHCwnMRmGTBW-44E5pQqgBqH6TzjlHFFWVzB0QIBdo5x4mSSrMhuj_17lLc9yF3ZhP71JZJQzUowYWWsrjg5PIp5pzCwuzSurHpYICYIztzYmcKO3NkZ6Bk6CmTi7ddhvTX_F_o7jy0iu1yX3K_S3WtqFCcK_YD8N172g</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Zhao, Chaojun</creator><creator>Chen, Chen</creator><creator>Chen, Zhijian</creator><creator>Meng, Jianyi</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160401</creationdate><title>Value locality based storage compression memory architecture for ECG sensor node</title><author>Zhao, Chaojun ; Chen, Chen ; Chen, Zhijian ; Meng, Jianyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-b7257c1a1fc45e373eca4b43590228116ce7bcb3284823db1055819bbb4087893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Computer memory</topic><topic>Computer Science</topic><topic>Information Systems and Communication Service</topic><topic>Research Paper</topic><topic>Spatial data</topic><topic>Storage</topic><topic>传感器节点</topic><topic>压缩存储</topic><topic>存储压缩</topic><topic>存储结构</topic><topic>心电图</topic><topic>空间位置</topic><topic>空间局部性</topic><topic>超低功耗</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Chaojun</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Chen, Zhijian</creatorcontrib><creatorcontrib>Meng, Jianyi</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Chaojun</au><au>Chen, Chen</au><au>Chen, Zhijian</au><au>Meng, Jianyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Value locality based storage compression memory architecture for ECG sensor node</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>59</volume><issue>4</issue><spage>41</spage><epage>51</epage><pages>41-51</pages><artnum>042401</artnum><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>This paper proposes a value compression memory architecture for QRS detection in ultra-low-power ECG sensor nodes. Based on the exploration of value spatial locality in the most critical preprocessing stage of the ECG algorithm, a cost efficient compression strategy, which reorganizes several adjacent sample values into a base value with several displacements, is proposed. The displacements will be half or quarter scale quantifications; as a result, the storage size is reduced. The memory architecture saves memory space by storing compressed data with value spatial locality into a compressed memory section and by using a small, uncompressed memory section as backup to store the uncompressed data when a value spatial locality miss occurs. Furthermore,a low-power accession strategy is proposed to achieve low-power accession. An embodiment of the proposed memory architecture has been evaluated using the MIT/BIH database, the proposed memory architecture and a low-power accession strategy to achieve memory space savings of 32.5% and to achieve a 68.1% power reduction with a negligible performance reduction of 0.2%.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11432-015-5371-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-733X
ispartof Science China. Information sciences, 2016-04, Vol.59 (4), p.41-51, Article 042401
issn 1674-733X
1869-1919
language eng
recordid cdi_proquest_journals_2918545977
source SpringerLink Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Algorithms
Computer memory
Computer Science
Information Systems and Communication Service
Research Paper
Spatial data
Storage
传感器节点
压缩存储
存储压缩
存储结构
心电图
空间位置
空间局部性
超低功耗
title Value locality based storage compression memory architecture for ECG sensor node
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Value%20locality%20based%20storage%20compression%20memory%20architecture%20for%20ECG%20sensor%20node&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Zhao,%20Chaojun&rft.date=2016-04-01&rft.volume=59&rft.issue=4&rft.spage=41&rft.epage=51&rft.pages=41-51&rft.artnum=042401&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-015-5371-1&rft_dat=%3Cproquest_cross%3E2918545977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918545977&rft_id=info:pmid/&rft_cqvip_id=668258448&rfr_iscdi=true