Value locality based storage compression memory architecture for ECG sensor node
This paper proposes a value compression memory architecture for QRS detection in ultra-low-power ECG sensor nodes. Based on the exploration of value spatial locality in the most critical preprocessing stage of the ECG algorithm, a cost efficient compression strategy, which reorganizes several adjace...
Gespeichert in:
Veröffentlicht in: | Science China. Information sciences 2016-04, Vol.59 (4), p.41-51, Article 042401 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 4 |
container_start_page | 41 |
container_title | Science China. Information sciences |
container_volume | 59 |
creator | Zhao, Chaojun Chen, Chen Chen, Zhijian Meng, Jianyi |
description | This paper proposes a value compression memory architecture for QRS detection in ultra-low-power ECG sensor nodes. Based on the exploration of value spatial locality in the most critical preprocessing stage of the ECG algorithm, a cost efficient compression strategy, which reorganizes several adjacent sample values into a base value with several displacements, is proposed. The displacements will be half or quarter scale quantifications; as a result, the storage size is reduced. The memory architecture saves memory space by storing compressed data with value spatial locality into a compressed memory section and by using a small, uncompressed memory section as backup to store the uncompressed data when a value spatial locality miss occurs. Furthermore,a low-power accession strategy is proposed to achieve low-power accession. An embodiment of the proposed memory architecture has been evaluated using the MIT/BIH database, the proposed memory architecture and a low-power accession strategy to achieve memory space savings of 32.5% and to achieve a 68.1% power reduction with a negligible performance reduction of 0.2%. |
doi_str_mv | 10.1007/s11432-015-5371-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918545977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>668258448</cqvip_id><sourcerecordid>2918545977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-b7257c1a1fc45e373eca4b43590228116ce7bcb3284823db1055819bbb4087893</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWGofwF3Q9WhOLpNkKaVWoaALFXchSdMbnUmbzCz69qa06M6zOf_iv8CH0C2QByBEPmYAzmhFQFSCSajgAg1A1boCDfqy6FrySjL2fY1GOW9IOcYIlWqA3r_stg94G73drrsDdjaHOc5dTHYZsI_NLoWc17HFTWhiOmCb_GrdBd_1KeBFTHgynuIc2lxkG-fhBl0t7DaH0fkP0efz5GP8Us3epq_jp1nlmYaucpIK6cHCwnMRmGTBW-44E5pQqgBqH6TzjlHFFWVzB0QIBdo5x4mSSrMhuj_17lLc9yF3ZhP71JZJQzUowYWWsrjg5PIp5pzCwuzSurHpYICYIztzYmcKO3NkZ6Bk6CmTi7ddhvTX_F_o7jy0iu1yX3K_S3WtqFCcK_YD8N172g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918545977</pqid></control><display><type>article</type><title>Value locality based storage compression memory architecture for ECG sensor node</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Zhao, Chaojun ; Chen, Chen ; Chen, Zhijian ; Meng, Jianyi</creator><creatorcontrib>Zhao, Chaojun ; Chen, Chen ; Chen, Zhijian ; Meng, Jianyi</creatorcontrib><description>This paper proposes a value compression memory architecture for QRS detection in ultra-low-power ECG sensor nodes. Based on the exploration of value spatial locality in the most critical preprocessing stage of the ECG algorithm, a cost efficient compression strategy, which reorganizes several adjacent sample values into a base value with several displacements, is proposed. The displacements will be half or quarter scale quantifications; as a result, the storage size is reduced. The memory architecture saves memory space by storing compressed data with value spatial locality into a compressed memory section and by using a small, uncompressed memory section as backup to store the uncompressed data when a value spatial locality miss occurs. Furthermore,a low-power accession strategy is proposed to achieve low-power accession. An embodiment of the proposed memory architecture has been evaluated using the MIT/BIH database, the proposed memory architecture and a low-power accession strategy to achieve memory space savings of 32.5% and to achieve a 68.1% power reduction with a negligible performance reduction of 0.2%.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-015-5371-1</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Algorithms ; Computer memory ; Computer Science ; Information Systems and Communication Service ; Research Paper ; Spatial data ; Storage ; 传感器节点 ; 压缩存储 ; 存储压缩 ; 存储结构 ; 心电图 ; 空间位置 ; 空间局部性 ; 超低功耗</subject><ispartof>Science China. Information sciences, 2016-04, Vol.59 (4), p.41-51, Article 042401</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-b7257c1a1fc45e373eca4b43590228116ce7bcb3284823db1055819bbb4087893</citedby><cites>FETCH-LOGICAL-c391t-b7257c1a1fc45e373eca4b43590228116ce7bcb3284823db1055819bbb4087893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84009A/84009A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11432-015-5371-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918545977?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Zhao, Chaojun</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Chen, Zhijian</creatorcontrib><creatorcontrib>Meng, Jianyi</creatorcontrib><title>Value locality based storage compression memory architecture for ECG sensor node</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><description>This paper proposes a value compression memory architecture for QRS detection in ultra-low-power ECG sensor nodes. Based on the exploration of value spatial locality in the most critical preprocessing stage of the ECG algorithm, a cost efficient compression strategy, which reorganizes several adjacent sample values into a base value with several displacements, is proposed. The displacements will be half or quarter scale quantifications; as a result, the storage size is reduced. The memory architecture saves memory space by storing compressed data with value spatial locality into a compressed memory section and by using a small, uncompressed memory section as backup to store the uncompressed data when a value spatial locality miss occurs. Furthermore,a low-power accession strategy is proposed to achieve low-power accession. An embodiment of the proposed memory architecture has been evaluated using the MIT/BIH database, the proposed memory architecture and a low-power accession strategy to achieve memory space savings of 32.5% and to achieve a 68.1% power reduction with a negligible performance reduction of 0.2%.</description><subject>Algorithms</subject><subject>Computer memory</subject><subject>Computer Science</subject><subject>Information Systems and Communication Service</subject><subject>Research Paper</subject><subject>Spatial data</subject><subject>Storage</subject><subject>传感器节点</subject><subject>压缩存储</subject><subject>存储压缩</subject><subject>存储结构</subject><subject>心电图</subject><subject>空间位置</subject><subject>空间局部性</subject><subject>超低功耗</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWGofwF3Q9WhOLpNkKaVWoaALFXchSdMbnUmbzCz69qa06M6zOf_iv8CH0C2QByBEPmYAzmhFQFSCSajgAg1A1boCDfqy6FrySjL2fY1GOW9IOcYIlWqA3r_stg94G73drrsDdjaHOc5dTHYZsI_NLoWc17HFTWhiOmCb_GrdBd_1KeBFTHgynuIc2lxkG-fhBl0t7DaH0fkP0efz5GP8Us3epq_jp1nlmYaucpIK6cHCwnMRmGTBW-44E5pQqgBqH6TzjlHFFWVzB0QIBdo5x4mSSrMhuj_17lLc9yF3ZhP71JZJQzUowYWWsrjg5PIp5pzCwuzSurHpYICYIztzYmcKO3NkZ6Bk6CmTi7ddhvTX_F_o7jy0iu1yX3K_S3WtqFCcK_YD8N172g</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Zhao, Chaojun</creator><creator>Chen, Chen</creator><creator>Chen, Zhijian</creator><creator>Meng, Jianyi</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160401</creationdate><title>Value locality based storage compression memory architecture for ECG sensor node</title><author>Zhao, Chaojun ; Chen, Chen ; Chen, Zhijian ; Meng, Jianyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-b7257c1a1fc45e373eca4b43590228116ce7bcb3284823db1055819bbb4087893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Computer memory</topic><topic>Computer Science</topic><topic>Information Systems and Communication Service</topic><topic>Research Paper</topic><topic>Spatial data</topic><topic>Storage</topic><topic>传感器节点</topic><topic>压缩存储</topic><topic>存储压缩</topic><topic>存储结构</topic><topic>心电图</topic><topic>空间位置</topic><topic>空间局部性</topic><topic>超低功耗</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Chaojun</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Chen, Zhijian</creatorcontrib><creatorcontrib>Meng, Jianyi</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Chaojun</au><au>Chen, Chen</au><au>Chen, Zhijian</au><au>Meng, Jianyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Value locality based storage compression memory architecture for ECG sensor node</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>59</volume><issue>4</issue><spage>41</spage><epage>51</epage><pages>41-51</pages><artnum>042401</artnum><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>This paper proposes a value compression memory architecture for QRS detection in ultra-low-power ECG sensor nodes. Based on the exploration of value spatial locality in the most critical preprocessing stage of the ECG algorithm, a cost efficient compression strategy, which reorganizes several adjacent sample values into a base value with several displacements, is proposed. The displacements will be half or quarter scale quantifications; as a result, the storage size is reduced. The memory architecture saves memory space by storing compressed data with value spatial locality into a compressed memory section and by using a small, uncompressed memory section as backup to store the uncompressed data when a value spatial locality miss occurs. Furthermore,a low-power accession strategy is proposed to achieve low-power accession. An embodiment of the proposed memory architecture has been evaluated using the MIT/BIH database, the proposed memory architecture and a low-power accession strategy to achieve memory space savings of 32.5% and to achieve a 68.1% power reduction with a negligible performance reduction of 0.2%.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11432-015-5371-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-733X |
ispartof | Science China. Information sciences, 2016-04, Vol.59 (4), p.41-51, Article 042401 |
issn | 1674-733X 1869-1919 |
language | eng |
recordid | cdi_proquest_journals_2918545977 |
source | SpringerLink Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Algorithms Computer memory Computer Science Information Systems and Communication Service Research Paper Spatial data Storage 传感器节点 压缩存储 存储压缩 存储结构 心电图 空间位置 空间局部性 超低功耗 |
title | Value locality based storage compression memory architecture for ECG sensor node |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Value%20locality%20based%20storage%20compression%20memory%20architecture%20for%20ECG%20sensor%20node&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Zhao,%20Chaojun&rft.date=2016-04-01&rft.volume=59&rft.issue=4&rft.spage=41&rft.epage=51&rft.pages=41-51&rft.artnum=042401&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-015-5371-1&rft_dat=%3Cproquest_cross%3E2918545977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918545977&rft_id=info:pmid/&rft_cqvip_id=668258448&rfr_iscdi=true |