Detection of collapsed buildings with the aerial images captured from UAV

In this paper, we present a method of detecting the collapsed buildings with the aerial images which are captured by an unmanned aerial vehicle (UAV) for the postseismic evaluation. Different from the conventional methods that apply the satellite images or the high-altitude UAV for the coarse disast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Information sciences 2016-03, Vol.59 (3), p.18-32, Article 32102
Hauptverfasser: Hua, Chunsheng, Qi, Juntong, Shang, Hong, Hu, Weijian, Han, Jianda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue 3
container_start_page 18
container_title Science China. Information sciences
container_volume 59
creator Hua, Chunsheng
Qi, Juntong
Shang, Hong
Hu, Weijian
Han, Jianda
description In this paper, we present a method of detecting the collapsed buildings with the aerial images which are captured by an unmanned aerial vehicle (UAV) for the postseismic evaluation. Different from the conventional methods that apply the satellite images or the high-altitude UAV for the coarse disaster evaluation over large area, the purpose of this work is to achieve the accurate detection of collapsed buildings in small area from low altitude. By combining the motion and appearance features of collapsed buildings extracted from successive aerial images, each pixel in the input image will be measured by a statistical method where the background pixels will be penalized and the ones of collapsed buildings will be assigned with high value. The candidates of collapsed buildings will be established by integrating the extracted feature points into local groups with the online clustering algorithm. To reduce the false alarm caused by the complex background noise, each predicted candidate will be further verified by the temporal tracking framework where both the trajectory and the appearance of a candidate will be measured. The candidate of collapsed buildings that can survive through long time will be considered as true positive, otherwise rejected as a false alarm. Through extensive experiments, the efficiency and the effectiveness of proposed algorithm have been proved.
doi_str_mv 10.1007/s11432-015-5341-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918542561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>667930692</cqvip_id><sourcerecordid>2918542561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-5ea6e27faf39ba99dfa2abe90d38b7c657f1a3e50dd94348b730eeee2da1050c3</originalsourceid><addsrcrecordid>eNp9UFtLwzAUDqLgmPsBvgV9jubSJM3jmFcY-OLEt5C2SdfRNV3SIv57Mzr0ze_lHA7f5fABcE3wHcFY3kdCMkYRJhxxlhEkz8CM5EIhoog6T7uQGZKMfV6CRYw7nMAYpjKfgdcHO9hyaHwHvYOlb1vTR1vBYmzaqunqCL-aYQuHrYXGhsa0sNmb2kZYmn4YQ2K64Pdws_y4AhfOtNEuTnMONk-P76sXtH57fl0t16hkuRgQt0ZYKp1xTBVGqcoZagqrcMXyQpaCS0cMsxxXlcpYlm4M2wRaGYI5Ltkc3E6-ffCH0cZB7_wYuhSpqSI5zygXJLHIxCqDjzFYp_uQPg_fmmB9LE1PpelUmj6WpmXS0EkTE7erbfhz_k90cwra-q4-JN1vkhBSMSwUZT-_xXqF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918542561</pqid></control><display><type>article</type><title>Detection of collapsed buildings with the aerial images captured from UAV</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Hua, Chunsheng ; Qi, Juntong ; Shang, Hong ; Hu, Weijian ; Han, Jianda</creator><creatorcontrib>Hua, Chunsheng ; Qi, Juntong ; Shang, Hong ; Hu, Weijian ; Han, Jianda</creatorcontrib><description>In this paper, we present a method of detecting the collapsed buildings with the aerial images which are captured by an unmanned aerial vehicle (UAV) for the postseismic evaluation. Different from the conventional methods that apply the satellite images or the high-altitude UAV for the coarse disaster evaluation over large area, the purpose of this work is to achieve the accurate detection of collapsed buildings in small area from low altitude. By combining the motion and appearance features of collapsed buildings extracted from successive aerial images, each pixel in the input image will be measured by a statistical method where the background pixels will be penalized and the ones of collapsed buildings will be assigned with high value. The candidates of collapsed buildings will be established by integrating the extracted feature points into local groups with the online clustering algorithm. To reduce the false alarm caused by the complex background noise, each predicted candidate will be further verified by the temporal tracking framework where both the trajectory and the appearance of a candidate will be measured. The candidate of collapsed buildings that can survive through long time will be considered as true positive, otherwise rejected as a false alarm. Through extensive experiments, the efficiency and the effectiveness of proposed algorithm have been proved.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-015-5341-7</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Algorithms ; Background noise ; Building failures ; Buildings ; CDH ; CL-AKA ; Clustering ; Computer Science ; False alarms ; High altitude ; Information Systems and Communication Service ; Low altitude ; Noise prediction ; Pixels ; Research Paper ; Satellite imagery ; Statistical methods ; Unmanned aerial vehicles ; 信息科学 ; 科学</subject><ispartof>Science China. Information sciences, 2016-03, Vol.59 (3), p.18-32, Article 32102</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-5ea6e27faf39ba99dfa2abe90d38b7c657f1a3e50dd94348b730eeee2da1050c3</citedby><cites>FETCH-LOGICAL-c386t-5ea6e27faf39ba99dfa2abe90d38b7c657f1a3e50dd94348b730eeee2da1050c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84009A/84009A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11432-015-5341-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918542561?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Hua, Chunsheng</creatorcontrib><creatorcontrib>Qi, Juntong</creatorcontrib><creatorcontrib>Shang, Hong</creatorcontrib><creatorcontrib>Hu, Weijian</creatorcontrib><creatorcontrib>Han, Jianda</creatorcontrib><title>Detection of collapsed buildings with the aerial images captured from UAV</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><description>In this paper, we present a method of detecting the collapsed buildings with the aerial images which are captured by an unmanned aerial vehicle (UAV) for the postseismic evaluation. Different from the conventional methods that apply the satellite images or the high-altitude UAV for the coarse disaster evaluation over large area, the purpose of this work is to achieve the accurate detection of collapsed buildings in small area from low altitude. By combining the motion and appearance features of collapsed buildings extracted from successive aerial images, each pixel in the input image will be measured by a statistical method where the background pixels will be penalized and the ones of collapsed buildings will be assigned with high value. The candidates of collapsed buildings will be established by integrating the extracted feature points into local groups with the online clustering algorithm. To reduce the false alarm caused by the complex background noise, each predicted candidate will be further verified by the temporal tracking framework where both the trajectory and the appearance of a candidate will be measured. The candidate of collapsed buildings that can survive through long time will be considered as true positive, otherwise rejected as a false alarm. Through extensive experiments, the efficiency and the effectiveness of proposed algorithm have been proved.</description><subject>Algorithms</subject><subject>Background noise</subject><subject>Building failures</subject><subject>Buildings</subject><subject>CDH</subject><subject>CL-AKA</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>False alarms</subject><subject>High altitude</subject><subject>Information Systems and Communication Service</subject><subject>Low altitude</subject><subject>Noise prediction</subject><subject>Pixels</subject><subject>Research Paper</subject><subject>Satellite imagery</subject><subject>Statistical methods</subject><subject>Unmanned aerial vehicles</subject><subject>信息科学</subject><subject>科学</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UFtLwzAUDqLgmPsBvgV9jubSJM3jmFcY-OLEt5C2SdfRNV3SIv57Mzr0ze_lHA7f5fABcE3wHcFY3kdCMkYRJhxxlhEkz8CM5EIhoog6T7uQGZKMfV6CRYw7nMAYpjKfgdcHO9hyaHwHvYOlb1vTR1vBYmzaqunqCL-aYQuHrYXGhsa0sNmb2kZYmn4YQ2K64Pdws_y4AhfOtNEuTnMONk-P76sXtH57fl0t16hkuRgQt0ZYKp1xTBVGqcoZagqrcMXyQpaCS0cMsxxXlcpYlm4M2wRaGYI5Ltkc3E6-ffCH0cZB7_wYuhSpqSI5zygXJLHIxCqDjzFYp_uQPg_fmmB9LE1PpelUmj6WpmXS0EkTE7erbfhz_k90cwra-q4-JN1vkhBSMSwUZT-_xXqF</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Hua, Chunsheng</creator><creator>Qi, Juntong</creator><creator>Shang, Hong</creator><creator>Hu, Weijian</creator><creator>Han, Jianda</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160301</creationdate><title>Detection of collapsed buildings with the aerial images captured from UAV</title><author>Hua, Chunsheng ; Qi, Juntong ; Shang, Hong ; Hu, Weijian ; Han, Jianda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-5ea6e27faf39ba99dfa2abe90d38b7c657f1a3e50dd94348b730eeee2da1050c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Background noise</topic><topic>Building failures</topic><topic>Buildings</topic><topic>CDH</topic><topic>CL-AKA</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>False alarms</topic><topic>High altitude</topic><topic>Information Systems and Communication Service</topic><topic>Low altitude</topic><topic>Noise prediction</topic><topic>Pixels</topic><topic>Research Paper</topic><topic>Satellite imagery</topic><topic>Statistical methods</topic><topic>Unmanned aerial vehicles</topic><topic>信息科学</topic><topic>科学</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Chunsheng</creatorcontrib><creatorcontrib>Qi, Juntong</creatorcontrib><creatorcontrib>Shang, Hong</creatorcontrib><creatorcontrib>Hu, Weijian</creatorcontrib><creatorcontrib>Han, Jianda</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Chunsheng</au><au>Qi, Juntong</au><au>Shang, Hong</au><au>Hu, Weijian</au><au>Han, Jianda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of collapsed buildings with the aerial images captured from UAV</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>59</volume><issue>3</issue><spage>18</spage><epage>32</epage><pages>18-32</pages><artnum>32102</artnum><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>In this paper, we present a method of detecting the collapsed buildings with the aerial images which are captured by an unmanned aerial vehicle (UAV) for the postseismic evaluation. Different from the conventional methods that apply the satellite images or the high-altitude UAV for the coarse disaster evaluation over large area, the purpose of this work is to achieve the accurate detection of collapsed buildings in small area from low altitude. By combining the motion and appearance features of collapsed buildings extracted from successive aerial images, each pixel in the input image will be measured by a statistical method where the background pixels will be penalized and the ones of collapsed buildings will be assigned with high value. The candidates of collapsed buildings will be established by integrating the extracted feature points into local groups with the online clustering algorithm. To reduce the false alarm caused by the complex background noise, each predicted candidate will be further verified by the temporal tracking framework where both the trajectory and the appearance of a candidate will be measured. The candidate of collapsed buildings that can survive through long time will be considered as true positive, otherwise rejected as a false alarm. Through extensive experiments, the efficiency and the effectiveness of proposed algorithm have been proved.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11432-015-5341-7</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-733X
ispartof Science China. Information sciences, 2016-03, Vol.59 (3), p.18-32, Article 32102
issn 1674-733X
1869-1919
language eng
recordid cdi_proquest_journals_2918542561
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection; ProQuest Central
subjects Algorithms
Background noise
Building failures
Buildings
CDH
CL-AKA
Clustering
Computer Science
False alarms
High altitude
Information Systems and Communication Service
Low altitude
Noise prediction
Pixels
Research Paper
Satellite imagery
Statistical methods
Unmanned aerial vehicles
信息科学
科学
title Detection of collapsed buildings with the aerial images captured from UAV
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20collapsed%20buildings%20with%20the%20aerial%20images%20captured%20from%20UAV&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Hua,%20Chunsheng&rft.date=2016-03-01&rft.volume=59&rft.issue=3&rft.spage=18&rft.epage=32&rft.pages=18-32&rft.artnum=32102&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-015-5341-7&rft_dat=%3Cproquest_cross%3E2918542561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918542561&rft_id=info:pmid/&rft_cqvip_id=667930692&rfr_iscdi=true