An Experimental Study on Blade Surface De-Icing Characteristics for Wind Turbines in Rime Ice Condition by Electro-Thermal Heating
Wind turbines in cold and humid regions face significant icing challenges. Heating is considered an efficient strategy to prevent ice accretion over the turbine’s blade surface. An ice protection system is required to minimize freezing of the runback water at the back of the blade and the melting st...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2024-01, Vol.14 (1), p.94 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wind turbines in cold and humid regions face significant icing challenges. Heating is considered an efficient strategy to prevent ice accretion over the turbine’s blade surface. An ice protection system is required to minimize freezing of the runback water at the back of the blade and the melting state of the ice on the blade; the law of re-freezing of the runback water is necessary for the design of wind turbine de-icing systems. In this paper, a wind tunnel test was conducted to investigate the de-icing process of a static heated blade under various rime icing conditions. Ice shapes of different thicknesses were obtained by spraying water at 5 m/s, 10 m/s, and 15 m/s. The spray system was turned off and different heating fluxes were applied to heat the blade. The de-icing state and total energy consumption were explored. When de-icing occurred in a short freezing time, the ice layer became thin, and runback water flowed out (pattern I). With an increase in freezing time at a low wind speed, the melting ice induced by the dominant action of inertial force moved backward due to the reduction in adhesion between the ice and blade surface (pattern II). As wind speed increased, it exhibited various de-icing states, including refreezing at the trailing edge (pattern III) and ice shedding (pattern IV). The total energy consumption of ice melting decreased as the heat flux increased and the ice melting time shortened. At 5 m/s, when the heat flux was q = 14 kW/m2, the energy consumption at EA at tδ = 1 min, 5 min, and 7 min were 0.33 kJ, 0.55 kJ, and 0.61 kJ, respectively. At 10 m/s, when the heat flux was q = 14 kW/m2, the energy consumption at EA at tδ = 1 min, 3 min, and 5 min were 0.77 kJ, 0.81 kJ, and 0.80 kJ, respectively. Excessive heat flow density increased the risk of the return water freezing; thus, the reference de-icing heat fluxes of 5 m/s and 10 m/s were 10 kW/m2 and 12 kW/m2, respectively. This paper provides an effective reference for wind turbine de-icing. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings14010094 |