Isothermal crystallization of polypropylene/surface modified silica nanocomposites

In the present work, 3-methacryloxypropyltrimethoxy-silane silanized silica (SiO2-WD70) and 9,10-dihydro-9-oxa-10-phospha- phenanthrene-10-oxide immobilized silica (SiO2-WD70-DOPO) nanoparticles were prepared. Silica, SiO2-WD70 and SiO2- WD70-DOPO were incorporated into polypropylene (PP) by melt co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Chemistry 2016-10, Vol.59 (10), p.1283-1290
Hauptverfasser: Tang, Hanying, Dong, Quanxiao, Liu, Peng, Ding, Yanfen, Wang, Feng, Gao, Chong, Zhang, Shimin, Yang, Mingshu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present work, 3-methacryloxypropyltrimethoxy-silane silanized silica (SiO2-WD70) and 9,10-dihydro-9-oxa-10-phospha- phenanthrene-10-oxide immobilized silica (SiO2-WD70-DOPO) nanoparticles were prepared. Silica, SiO2-WD70 and SiO2- WD70-DOPO were incorporated into polypropylene (PP) by melt compounding. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and polarized optical microscopy (POM) were employed to investigate the isothermal crystallization behavior of PP and PP/silica composites. The kinetic constant (kn), and half crystallization time (t1/2) were calculated by Avrami equation, while the surface free energy of folding was calculated by Lauritzen-Hoffman theory. The increased k,, decreased t1/2 and the surface free energy (ere) in the order ofPP, PP/SiO2, PP/SiO2-WD70 and PP/SiO2-WD70-DOPO nanocomposites were attributed to the surface modification of silica. XRD indicated that SiO2-WD70-DOPO addition had no effect on PP crystal structure but accelerated the crystallization rate. POM determined that SiO2-WD70-DOPO addition promoted the nucleation of PP by inducing a higher nucleation density during isothermal conditions. The surface modified nanoparticle SiO2-WD70-DOPO might find possible application as a new type of inorganic nano-sized nucleation agent for PP.
ISSN:1674-7291
1869-1870
DOI:10.1007/s11426-016-0146-0