A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems
In this paper, we consider a class of structured nonconvex nonsmooth optimization problems, in which the objective function is formed by the sum of a possibly nonsmooth nonconvex function and a differentiable function with Lipschitz continuous gradient, subtracted by a weakly convex function. This g...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2023-12, Vol.94 (4), p.1763-1795 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1795 |
---|---|
container_issue | 4 |
container_start_page | 1763 |
container_title | Numerical algorithms |
container_volume | 94 |
creator | Pham, Tan Nhat Dao, Minh N. Shah, Rakibuzzaman Sultanova, Nargiz Li, Guoyin Islam, Syed |
description | In this paper, we consider a class of structured nonconvex nonsmooth optimization problems, in which the objective function is formed by the sum of a possibly nonsmooth nonconvex function and a differentiable function with Lipschitz continuous gradient, subtracted by a weakly convex function. This general framework allows us to tackle problems involving nonconvex loss functions and problems with specific nonconvex constraints, and it has many applications such as signal recovery, compressed sensing, and optimal power flow distribution. We develop a proximal subgradient algorithm with extrapolation for solving these problems with guaranteed subsequential convergence to a stationary point. The convergence of the whole sequence generated by our algorithm is also established under the widely used Kurdyka–Łojasiewicz property. To illustrate the promising numerical performance of the proposed algorithm, we conduct numerical experiments on two important nonconvex models. These include a compressed sensing problem with a nonconvex regularization and an optimal power flow problem with distributed energy resources. |
doi_str_mv | 10.1007/s11075-023-01554-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918496132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918496132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-bf9903550dda4466c4ad4f6449eca0fdbf2630dffadacce77b4542c59dabdd8c3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mzwM6mPVQUUqRIXOFuOHyVVEhfbgfLvcQkSNy67e5hvRjsAXBN8SzCu7xIhuBYIU4YwEYIjcQJmRNQUSVqJ03JjUiPC5OIcXKS0w7hgtJ4BtYT7GA5trzuYxmYbtW3dkKHutiG2-a2Hn2VCd8hR70OncxsG6EOEKcfR5DE6C4cwmDB8uMPxSn0IBSimTef6dAnOvO6Su_rdc_D6cP-yWqPN8-PTarlBhhGeUeOlxEwIbK3mvKoM15b7inPpjMbeNp5WDFvvtdXGuLpuuODUCGl1Y-3CsDm4mXxL8PvoUla7MMahRCoqyYLLijBaVHRSmRhSis6rfSyvxy9FsDoWqaYiVSlS_RSpRIHYBKUiHrYu_ln_Q30DLkd55w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918496132</pqid></control><display><type>article</type><title>A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Pham, Tan Nhat ; Dao, Minh N. ; Shah, Rakibuzzaman ; Sultanova, Nargiz ; Li, Guoyin ; Islam, Syed</creator><creatorcontrib>Pham, Tan Nhat ; Dao, Minh N. ; Shah, Rakibuzzaman ; Sultanova, Nargiz ; Li, Guoyin ; Islam, Syed</creatorcontrib><description>In this paper, we consider a class of structured nonconvex nonsmooth optimization problems, in which the objective function is formed by the sum of a possibly nonsmooth nonconvex function and a differentiable function with Lipschitz continuous gradient, subtracted by a weakly convex function. This general framework allows us to tackle problems involving nonconvex loss functions and problems with specific nonconvex constraints, and it has many applications such as signal recovery, compressed sensing, and optimal power flow distribution. We develop a proximal subgradient algorithm with extrapolation for solving these problems with guaranteed subsequential convergence to a stationary point. The convergence of the whole sequence generated by our algorithm is also established under the widely used Kurdyka–Łojasiewicz property. To illustrate the promising numerical performance of the proposed algorithm, we conduct numerical experiments on two important nonconvex models. These include a compressed sensing problem with a nonconvex regularization and an optimal power flow problem with distributed energy resources.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-023-01554-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Science ; Continuity (mathematics) ; Convergence ; Convex analysis ; Distributed generation ; Energy sources ; Extrapolation ; Flow distribution ; Hilbert space ; Numeric Computing ; Numerical Analysis ; Optimization ; Original Paper ; Performance evaluation ; Power flow ; Regularization ; Signal reconstruction ; Theory of Computation</subject><ispartof>Numerical algorithms, 2023-12, Vol.94 (4), p.1763-1795</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-bf9903550dda4466c4ad4f6449eca0fdbf2630dffadacce77b4542c59dabdd8c3</cites><orcidid>0000-0002-8074-6675 ; 0000-0002-2099-7974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-023-01554-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918496132?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Pham, Tan Nhat</creatorcontrib><creatorcontrib>Dao, Minh N.</creatorcontrib><creatorcontrib>Shah, Rakibuzzaman</creatorcontrib><creatorcontrib>Sultanova, Nargiz</creatorcontrib><creatorcontrib>Li, Guoyin</creatorcontrib><creatorcontrib>Islam, Syed</creatorcontrib><title>A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>In this paper, we consider a class of structured nonconvex nonsmooth optimization problems, in which the objective function is formed by the sum of a possibly nonsmooth nonconvex function and a differentiable function with Lipschitz continuous gradient, subtracted by a weakly convex function. This general framework allows us to tackle problems involving nonconvex loss functions and problems with specific nonconvex constraints, and it has many applications such as signal recovery, compressed sensing, and optimal power flow distribution. We develop a proximal subgradient algorithm with extrapolation for solving these problems with guaranteed subsequential convergence to a stationary point. The convergence of the whole sequence generated by our algorithm is also established under the widely used Kurdyka–Łojasiewicz property. To illustrate the promising numerical performance of the proposed algorithm, we conduct numerical experiments on two important nonconvex models. These include a compressed sensing problem with a nonconvex regularization and an optimal power flow problem with distributed energy resources.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Continuity (mathematics)</subject><subject>Convergence</subject><subject>Convex analysis</subject><subject>Distributed generation</subject><subject>Energy sources</subject><subject>Extrapolation</subject><subject>Flow distribution</subject><subject>Hilbert space</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Performance evaluation</subject><subject>Power flow</subject><subject>Regularization</subject><subject>Signal reconstruction</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mzwM6mPVQUUqRIXOFuOHyVVEhfbgfLvcQkSNy67e5hvRjsAXBN8SzCu7xIhuBYIU4YwEYIjcQJmRNQUSVqJ03JjUiPC5OIcXKS0w7hgtJ4BtYT7GA5trzuYxmYbtW3dkKHutiG2-a2Hn2VCd8hR70OncxsG6EOEKcfR5DE6C4cwmDB8uMPxSn0IBSimTef6dAnOvO6Su_rdc_D6cP-yWqPN8-PTarlBhhGeUeOlxEwIbK3mvKoM15b7inPpjMbeNp5WDFvvtdXGuLpuuODUCGl1Y-3CsDm4mXxL8PvoUla7MMahRCoqyYLLijBaVHRSmRhSis6rfSyvxy9FsDoWqaYiVSlS_RSpRIHYBKUiHrYu_ln_Q30DLkd55w</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Pham, Tan Nhat</creator><creator>Dao, Minh N.</creator><creator>Shah, Rakibuzzaman</creator><creator>Sultanova, Nargiz</creator><creator>Li, Guoyin</creator><creator>Islam, Syed</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8074-6675</orcidid><orcidid>https://orcid.org/0000-0002-2099-7974</orcidid></search><sort><creationdate>20231201</creationdate><title>A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems</title><author>Pham, Tan Nhat ; Dao, Minh N. ; Shah, Rakibuzzaman ; Sultanova, Nargiz ; Li, Guoyin ; Islam, Syed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-bf9903550dda4466c4ad4f6449eca0fdbf2630dffadacce77b4542c59dabdd8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Continuity (mathematics)</topic><topic>Convergence</topic><topic>Convex analysis</topic><topic>Distributed generation</topic><topic>Energy sources</topic><topic>Extrapolation</topic><topic>Flow distribution</topic><topic>Hilbert space</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Performance evaluation</topic><topic>Power flow</topic><topic>Regularization</topic><topic>Signal reconstruction</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Tan Nhat</creatorcontrib><creatorcontrib>Dao, Minh N.</creatorcontrib><creatorcontrib>Shah, Rakibuzzaman</creatorcontrib><creatorcontrib>Sultanova, Nargiz</creatorcontrib><creatorcontrib>Li, Guoyin</creatorcontrib><creatorcontrib>Islam, Syed</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Tan Nhat</au><au>Dao, Minh N.</au><au>Shah, Rakibuzzaman</au><au>Sultanova, Nargiz</au><au>Li, Guoyin</au><au>Islam, Syed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>94</volume><issue>4</issue><spage>1763</spage><epage>1795</epage><pages>1763-1795</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>In this paper, we consider a class of structured nonconvex nonsmooth optimization problems, in which the objective function is formed by the sum of a possibly nonsmooth nonconvex function and a differentiable function with Lipschitz continuous gradient, subtracted by a weakly convex function. This general framework allows us to tackle problems involving nonconvex loss functions and problems with specific nonconvex constraints, and it has many applications such as signal recovery, compressed sensing, and optimal power flow distribution. We develop a proximal subgradient algorithm with extrapolation for solving these problems with guaranteed subsequential convergence to a stationary point. The convergence of the whole sequence generated by our algorithm is also established under the widely used Kurdyka–Łojasiewicz property. To illustrate the promising numerical performance of the proposed algorithm, we conduct numerical experiments on two important nonconvex models. These include a compressed sensing problem with a nonconvex regularization and an optimal power flow problem with distributed energy resources.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-023-01554-5</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-8074-6675</orcidid><orcidid>https://orcid.org/0000-0002-2099-7974</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2023-12, Vol.94 (4), p.1763-1795 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_journals_2918496132 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Algebra Algorithms Computer Science Continuity (mathematics) Convergence Convex analysis Distributed generation Energy sources Extrapolation Flow distribution Hilbert space Numeric Computing Numerical Analysis Optimization Original Paper Performance evaluation Power flow Regularization Signal reconstruction Theory of Computation |
title | A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20proximal%20subgradient%20algorithm%20with%20extrapolation%20for%20structured%20nonconvex%20nonsmooth%20problems&rft.jtitle=Numerical%20algorithms&rft.au=Pham,%20Tan%20Nhat&rft.date=2023-12-01&rft.volume=94&rft.issue=4&rft.spage=1763&rft.epage=1795&rft.pages=1763-1795&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-023-01554-5&rft_dat=%3Cproquest_cross%3E2918496132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918496132&rft_id=info:pmid/&rfr_iscdi=true |