A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems

In this paper, we consider a class of structured nonconvex nonsmooth optimization problems, in which the objective function is formed by the sum of a possibly nonsmooth nonconvex function and a differentiable function with Lipschitz continuous gradient, subtracted by a weakly convex function. This g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2023-12, Vol.94 (4), p.1763-1795
Hauptverfasser: Pham, Tan Nhat, Dao, Minh N., Shah, Rakibuzzaman, Sultanova, Nargiz, Li, Guoyin, Islam, Syed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1795
container_issue 4
container_start_page 1763
container_title Numerical algorithms
container_volume 94
creator Pham, Tan Nhat
Dao, Minh N.
Shah, Rakibuzzaman
Sultanova, Nargiz
Li, Guoyin
Islam, Syed
description In this paper, we consider a class of structured nonconvex nonsmooth optimization problems, in which the objective function is formed by the sum of a possibly nonsmooth nonconvex function and a differentiable function with Lipschitz continuous gradient, subtracted by a weakly convex function. This general framework allows us to tackle problems involving nonconvex loss functions and problems with specific nonconvex constraints, and it has many applications such as signal recovery, compressed sensing, and optimal power flow distribution. We develop a proximal subgradient algorithm with extrapolation for solving these problems with guaranteed subsequential convergence to a stationary point. The convergence of the whole sequence generated by our algorithm is also established under the widely used Kurdyka–Łojasiewicz property. To illustrate the promising numerical performance of the proposed algorithm, we conduct numerical experiments on two important nonconvex models. These include a compressed sensing problem with a nonconvex regularization and an optimal power flow problem with distributed energy resources.
doi_str_mv 10.1007/s11075-023-01554-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918496132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918496132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-bf9903550dda4466c4ad4f6449eca0fdbf2630dffadacce77b4542c59dabdd8c3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mzwM6mPVQUUqRIXOFuOHyVVEhfbgfLvcQkSNy67e5hvRjsAXBN8SzCu7xIhuBYIU4YwEYIjcQJmRNQUSVqJ03JjUiPC5OIcXKS0w7hgtJ4BtYT7GA5trzuYxmYbtW3dkKHutiG2-a2Hn2VCd8hR70OncxsG6EOEKcfR5DE6C4cwmDB8uMPxSn0IBSimTef6dAnOvO6Su_rdc_D6cP-yWqPN8-PTarlBhhGeUeOlxEwIbK3mvKoM15b7inPpjMbeNp5WDFvvtdXGuLpuuODUCGl1Y-3CsDm4mXxL8PvoUla7MMahRCoqyYLLijBaVHRSmRhSis6rfSyvxy9FsDoWqaYiVSlS_RSpRIHYBKUiHrYu_ln_Q30DLkd55w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918496132</pqid></control><display><type>article</type><title>A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Pham, Tan Nhat ; Dao, Minh N. ; Shah, Rakibuzzaman ; Sultanova, Nargiz ; Li, Guoyin ; Islam, Syed</creator><creatorcontrib>Pham, Tan Nhat ; Dao, Minh N. ; Shah, Rakibuzzaman ; Sultanova, Nargiz ; Li, Guoyin ; Islam, Syed</creatorcontrib><description>In this paper, we consider a class of structured nonconvex nonsmooth optimization problems, in which the objective function is formed by the sum of a possibly nonsmooth nonconvex function and a differentiable function with Lipschitz continuous gradient, subtracted by a weakly convex function. This general framework allows us to tackle problems involving nonconvex loss functions and problems with specific nonconvex constraints, and it has many applications such as signal recovery, compressed sensing, and optimal power flow distribution. We develop a proximal subgradient algorithm with extrapolation for solving these problems with guaranteed subsequential convergence to a stationary point. The convergence of the whole sequence generated by our algorithm is also established under the widely used Kurdyka–Łojasiewicz property. To illustrate the promising numerical performance of the proposed algorithm, we conduct numerical experiments on two important nonconvex models. These include a compressed sensing problem with a nonconvex regularization and an optimal power flow problem with distributed energy resources.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-023-01554-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Science ; Continuity (mathematics) ; Convergence ; Convex analysis ; Distributed generation ; Energy sources ; Extrapolation ; Flow distribution ; Hilbert space ; Numeric Computing ; Numerical Analysis ; Optimization ; Original Paper ; Performance evaluation ; Power flow ; Regularization ; Signal reconstruction ; Theory of Computation</subject><ispartof>Numerical algorithms, 2023-12, Vol.94 (4), p.1763-1795</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-bf9903550dda4466c4ad4f6449eca0fdbf2630dffadacce77b4542c59dabdd8c3</cites><orcidid>0000-0002-8074-6675 ; 0000-0002-2099-7974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-023-01554-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918496132?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Pham, Tan Nhat</creatorcontrib><creatorcontrib>Dao, Minh N.</creatorcontrib><creatorcontrib>Shah, Rakibuzzaman</creatorcontrib><creatorcontrib>Sultanova, Nargiz</creatorcontrib><creatorcontrib>Li, Guoyin</creatorcontrib><creatorcontrib>Islam, Syed</creatorcontrib><title>A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>In this paper, we consider a class of structured nonconvex nonsmooth optimization problems, in which the objective function is formed by the sum of a possibly nonsmooth nonconvex function and a differentiable function with Lipschitz continuous gradient, subtracted by a weakly convex function. This general framework allows us to tackle problems involving nonconvex loss functions and problems with specific nonconvex constraints, and it has many applications such as signal recovery, compressed sensing, and optimal power flow distribution. We develop a proximal subgradient algorithm with extrapolation for solving these problems with guaranteed subsequential convergence to a stationary point. The convergence of the whole sequence generated by our algorithm is also established under the widely used Kurdyka–Łojasiewicz property. To illustrate the promising numerical performance of the proposed algorithm, we conduct numerical experiments on two important nonconvex models. These include a compressed sensing problem with a nonconvex regularization and an optimal power flow problem with distributed energy resources.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Continuity (mathematics)</subject><subject>Convergence</subject><subject>Convex analysis</subject><subject>Distributed generation</subject><subject>Energy sources</subject><subject>Extrapolation</subject><subject>Flow distribution</subject><subject>Hilbert space</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Performance evaluation</subject><subject>Power flow</subject><subject>Regularization</subject><subject>Signal reconstruction</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mzwM6mPVQUUqRIXOFuOHyVVEhfbgfLvcQkSNy67e5hvRjsAXBN8SzCu7xIhuBYIU4YwEYIjcQJmRNQUSVqJ03JjUiPC5OIcXKS0w7hgtJ4BtYT7GA5trzuYxmYbtW3dkKHutiG2-a2Hn2VCd8hR70OncxsG6EOEKcfR5DE6C4cwmDB8uMPxSn0IBSimTef6dAnOvO6Su_rdc_D6cP-yWqPN8-PTarlBhhGeUeOlxEwIbK3mvKoM15b7inPpjMbeNp5WDFvvtdXGuLpuuODUCGl1Y-3CsDm4mXxL8PvoUla7MMahRCoqyYLLijBaVHRSmRhSis6rfSyvxy9FsDoWqaYiVSlS_RSpRIHYBKUiHrYu_ln_Q30DLkd55w</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Pham, Tan Nhat</creator><creator>Dao, Minh N.</creator><creator>Shah, Rakibuzzaman</creator><creator>Sultanova, Nargiz</creator><creator>Li, Guoyin</creator><creator>Islam, Syed</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8074-6675</orcidid><orcidid>https://orcid.org/0000-0002-2099-7974</orcidid></search><sort><creationdate>20231201</creationdate><title>A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems</title><author>Pham, Tan Nhat ; Dao, Minh N. ; Shah, Rakibuzzaman ; Sultanova, Nargiz ; Li, Guoyin ; Islam, Syed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-bf9903550dda4466c4ad4f6449eca0fdbf2630dffadacce77b4542c59dabdd8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Continuity (mathematics)</topic><topic>Convergence</topic><topic>Convex analysis</topic><topic>Distributed generation</topic><topic>Energy sources</topic><topic>Extrapolation</topic><topic>Flow distribution</topic><topic>Hilbert space</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Performance evaluation</topic><topic>Power flow</topic><topic>Regularization</topic><topic>Signal reconstruction</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Tan Nhat</creatorcontrib><creatorcontrib>Dao, Minh N.</creatorcontrib><creatorcontrib>Shah, Rakibuzzaman</creatorcontrib><creatorcontrib>Sultanova, Nargiz</creatorcontrib><creatorcontrib>Li, Guoyin</creatorcontrib><creatorcontrib>Islam, Syed</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Tan Nhat</au><au>Dao, Minh N.</au><au>Shah, Rakibuzzaman</au><au>Sultanova, Nargiz</au><au>Li, Guoyin</au><au>Islam, Syed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>94</volume><issue>4</issue><spage>1763</spage><epage>1795</epage><pages>1763-1795</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>In this paper, we consider a class of structured nonconvex nonsmooth optimization problems, in which the objective function is formed by the sum of a possibly nonsmooth nonconvex function and a differentiable function with Lipschitz continuous gradient, subtracted by a weakly convex function. This general framework allows us to tackle problems involving nonconvex loss functions and problems with specific nonconvex constraints, and it has many applications such as signal recovery, compressed sensing, and optimal power flow distribution. We develop a proximal subgradient algorithm with extrapolation for solving these problems with guaranteed subsequential convergence to a stationary point. The convergence of the whole sequence generated by our algorithm is also established under the widely used Kurdyka–Łojasiewicz property. To illustrate the promising numerical performance of the proposed algorithm, we conduct numerical experiments on two important nonconvex models. These include a compressed sensing problem with a nonconvex regularization and an optimal power flow problem with distributed energy resources.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-023-01554-5</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-8074-6675</orcidid><orcidid>https://orcid.org/0000-0002-2099-7974</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2023-12, Vol.94 (4), p.1763-1795
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918496132
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Algebra
Algorithms
Computer Science
Continuity (mathematics)
Convergence
Convex analysis
Distributed generation
Energy sources
Extrapolation
Flow distribution
Hilbert space
Numeric Computing
Numerical Analysis
Optimization
Original Paper
Performance evaluation
Power flow
Regularization
Signal reconstruction
Theory of Computation
title A proximal subgradient algorithm with extrapolation for structured nonconvex nonsmooth problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20proximal%20subgradient%20algorithm%20with%20extrapolation%20for%20structured%20nonconvex%20nonsmooth%20problems&rft.jtitle=Numerical%20algorithms&rft.au=Pham,%20Tan%20Nhat&rft.date=2023-12-01&rft.volume=94&rft.issue=4&rft.spage=1763&rft.epage=1795&rft.pages=1763-1795&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-023-01554-5&rft_dat=%3Cproquest_cross%3E2918496132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918496132&rft_id=info:pmid/&rfr_iscdi=true